题目描述
【问题描述】
小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间。
小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
-
在一个 n*m 棋盘上有 n*m 个格子,其中有且只有一个格子是空白的,其余 n*m-1个格子上每个格子上有一个棋子,每个棋子的大小都是 1*1 的;
-
有些棋子是固定的,有些棋子则是可以移动的;
- 任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。
游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 q 次,当然,每次棋盘上固定的格子是不会变的, 但是棋盘上空白的格子的初始位置、 指定的可移动的棋子的初始位置和目标位置却可能不同。第 i 次
玩的时候, 空白的格子在第 EXi 行第 EYi 列,指定的可移动棋子的初始位置为第 SXi 行第 SYi列,目标位置为第 TXi 行第 TYi 列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
输入输出格式
输入格式:
输入文件为 puzzle.in。
第一行有 3 个整数,每两个整数之间用一个空格隔开,依次表示 n、m 和 q;
接下来的 n 行描述一个 n*m 的棋盘,每行有 m 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,0 表示该格子上的棋子是固定的,1 表示该格子上的棋子可以移动或者该格子是空白的。接下来的 q 行,每行包含 6 个整数依次是 EXi、EYi、SXi、SYi、TXi、TYi,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。
输出格式:
输出文件名为 puzzle.out。
输出有 q 行,每行包含 1 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出−1。
输入输出样例
3 4 2 0 1 1 1 0 1 1 0 0 1 0 0 3 2 1 2 2 2 1 2 2 2 3 2
2 -1
说明
【输入输出样例说明】
棋盘上划叉的格子是固定的,红色格子是目标位置,圆圈表示棋子,其中绿色圆圈表示目标棋子。
- 第一次游戏,空白格子的初始位置是 (3, 2)(图中空白所示),游戏的目标是将初始位置在(1, 2)上的棋子(图中绿色圆圈所代表的棋子)移动到目标位置(2, 2)(图中红色的格子)上。
移动过程如下:
- 第二次游戏,空白格子的初始位置是(1, 2)(图中空白所示),游戏的目标是将初始位置在(2, 2)上的棋子(图中绿色圆圈所示)移动到目标位置 (3, 2)上。
要将指定块移入目标位置,必须先将空白块移入目标位置,空白块要移动到目标位置,必然是从位置(2, 2)上与当前图中目标位置上的棋子交换位置,之后能与空白块交换位置的只有当前图中目标位置上的那个棋子,因此目标棋子永远无法走到它的目标位置, 游戏无
法完成。
【数据范围】
对于 30%的数据,1 ≤ n, m ≤ 10,q = 1;
对于 60%的数据,1 ≤ n, m ≤ 30,q ≤ 10;
对于 100%的数据,1 ≤ n, m ≤ 30,q ≤ 500。
思路:
正解好麻烦,我只写了70分。
把它看成空白格子E在动,如果和要移动的格子S相邻,就交换位置,时间+1。否则就继续移动E。时间+1.
#include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<queue> #define rg register using namespace std; struct node { int x,y; int a,b; int step; }LYH; bool vis[31][31][31][31]; int map[31][31]; int n,m,Q,ans; int ex,ey,sx,sy,tx,ty; int X0[5]={0,0,-1,0,1}; int Y0[5]={0,-1,0,1,0}; void bfs() { queue<node> q; node temp,tmp; int a,b; memset(vis,0x0,sizeof(vis)); q.push(LYH); vis[sx][sy][ex][ey]=1; while( !q.empty() ) { temp=q.front(); q.pop(); if(temp.a==tx&&temp.b==ty) { ans=temp.step; return; } for(int k=1;k<=4;k++) { tmp=temp; a=tmp.x+X0[k]; b=tmp.y+Y0[k]; if(a==tmp.a&&b==tmp.b) tmp.a=tmp.x,tmp.b=tmp.y; if( (!map[a][b])||a<1||a>n||b<1||b>m) continue; tmp.x=a,tmp.y=b;tmp.step=tmp.step+1; if(!vis[tmp.a][tmp.b][tmp.x][tmp.y]) { q.push(tmp); vis[tmp.a][tmp.b][tmp.x][tmp.y]=1; } } } } int main() { scanf("%d%d%d",&n,&m,&Q); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&map[i][j]); for(int i=1;i<=Q;i++) { ans=m*n; scanf("%d%d%d%d%d%d",&ex,&ey,&sx,&sy,&tx,&ty); LYH.step=0; LYH.a=sx,LYH.b=sy; LYH.x=ex,LYH.y=ey; if(sx==tx&&sy==ty) { printf("0\n"); continue; } bfs(); if(ans!=n*m) printf("%d\n",ans); else printf("-1\n"); } return 0; }