问题描述
给出一棵N个节点的树,每个节点上都附有一个权值ai。现在Ann想从中选出若干个节点,满足以下条件:
1. 至少选出一个节点
2. 节点之间是连通的
3. 设节点中权值最大的为ap,最小的为aq,则需要满足ap-aq不大于某个定值D。
Ann想知道有多少种选择的方式?结果对1,000,000,007取模即可。
输入格式(set.in)
第一行包含两个整数D, N,分别代表定值D与节点总数N。
第二行包含N个整数ai,分别代表每个点的权值。
接下来N-1行,每行包含两个数u, v,代表树中节点u与节点v是相连的。
输出格式(set.out)
一个整数,代表方案数模1,000,000,007的结果。
样例输入
1 4
2 1 3 2
1 2
1 3
3 4
样例输出
8
样例解释
8个选择方式为:{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4}, {1, 3, 4}。
数据范围与约束
对于30% 的数据,1<=n<=10;
对于另外的30% 的数据,d=2000.
对于100% 的数据,0<=d<=2000, 1<=n<=2000, 1<=ai<=2000.
思路:
搜索+dp,找到联通的两块,利用乘法原理就能求出更大的一个连通块内的dp值,就不用一个个去找了。
#include<iostream> #include<queue> #include<math.h> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define MOD 1000000007 int d,n,a[2100]; int h[2100],next[4200],to[4200],cnt; int rt,al,ar; long long f[2100],ans=0; void dfs(int x,int last) { f[x] = 1; for(int i=h[x];i;i=next[i]) { int u=to[i]; if(a[u]<al||a[u]>ar||u==last) continue; if(a[u]==al&&u<rt) continue; dfs(u,x); f[x]=(f[x]*(f[u]+1))%MOD; } } int main() { freopen("set.in","r",stdin);freopen("set.out","w",stdout); scanf("%d%d",&d,&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); for(int i=1,v,u;i<n;i++) { scanf("%d%d",&v,&u); to[++cnt]=u,next[cnt]=h[v],h[v]=cnt; to[++cnt]=v,next[cnt]=h[u],h[u]=cnt; } for(int i=1;i<=n;i++) { rt=i; al=a[i],ar=a[i]+d; dfs(i,0); (ans+=f[i])%=MOD; } cout<<ans<<endl; return 0; }