算法训练 结点选择

问题描述

有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式

第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式

输出一个整数,代表选出的点的权值和的最大值。


样例输入

5
1 2 3 4 5
1 2
1 3
2 4
2 5

样例输出

12

数据规模与约定

对于20%的数据, n <= 20。

对于50%的数据, n <= 1000。

对于100%的数据, n <= 100000。

权值均为不超过1000的正整数。


解题感想

首先感谢https://blog.csdn.net/f_zyj/article/details/50823600#commentBox的文章,给了不少提示。这里没能想到通过二维数组中的0和1去代表取不取该点,很意外。对于转态方程这块我根本想不到啊!好难有木有!


附上代码

#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int dp[100005][2];
int vis[100005]={0};//0 代表当前节点没有访问过 
vector<int> v[100005];
int main()
{
	int n;
	void dfs(int);
	cin>>n;
	//赋予每个节点权值 ,1代表取这个节点。 
	for(int i=1;i<=n;i++)
	{
		cin>>dp[i][1];
	}
	//构造连通图 
	for(int i=1;i<n;i++)
	{
		int x,y;
		cin>>x>>y;
		v[x].push_back(y);
		v[y].push_back(x);
	}
	//深搜、分取父节点与不取父节点两种情况 
	dfs(1);
	cout<<max(dp[1][0],dp[1][1])<<endl;
	return 0;
} 
void dfs(int x)
{
	vis[x]=1;
	for(int i=0;i<v[x].size();i++) 
	{
		if(vis[v[x][i]])
			continue;
		dfs(v[x][i]);
		dp[x][1]+=dp[v[x][i]][0];
		dp[x][0]+=max(dp[v[x][i]][0],dp[v[x][i]][1]);
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值