问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
输入格式
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
数据规模与约定
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
解题感想
首先感谢https://blog.csdn.net/f_zyj/article/details/50823600#commentBox的文章,给了不少提示。这里没能想到通过二维数组中的0和1去代表取不取该点,很意外。对于转态方程这块我根本想不到啊!好难有木有!
附上代码
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
int dp[100005][2];
int vis[100005]={0};//0 代表当前节点没有访问过
vector<int> v[100005];
int main()
{
int n;
void dfs(int);
cin>>n;
//赋予每个节点权值 ,1代表取这个节点。
for(int i=1;i<=n;i++)
{
cin>>dp[i][1];
}
//构造连通图
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
v[x].push_back(y);
v[y].push_back(x);
}
//深搜、分取父节点与不取父节点两种情况
dfs(1);
cout<<max(dp[1][0],dp[1][1])<<endl;
return 0;
}
void dfs(int x)
{
vis[x]=1;
for(int i=0;i<v[x].size();i++)
{
if(vis[v[x][i]])
continue;
dfs(v[x][i]);
dp[x][1]+=dp[v[x][i]][0];
dp[x][0]+=max(dp[v[x][i]][0],dp[v[x][i]][1]);
}
}