基于“蒙提霍尔问题”(三门问题)思考现实生活中非完全随机问题中的选择(抉择)方法...

在三门问题里面,如果大家把第二次主持人给玩家的换门机会,看成是玩家第二次选择的机会的话。
这个时候主要讨论的其实是“在完全随机的情况下,对小概率事件多次发生的概率会比较大概率事件交叉发生的概率小”。
因为一个很明显的现象是:这个问题一开始的关注点是“换与不换达到获奖”,而忽略了另一个问题“换与不换达到不获奖”。
一旦开始关注“不获奖”的情况的话,你就会发现:换门而不获奖的概率,其实是1/3,跟换门获奖的概率1/3是一样的!同样的,换门而不获奖的概率也大于不换门获奖1/6的概率!!
所以,其实在现实讨论中,换与不换的情况不是重点,而是如何去选择的问题。
但是对于现实生活中,非完全随机的情况下出现的事件会更普遍。那么,这个时候应该如何选择呢?也就是说,当对自己初次选择的方案中,增加多大概率的把握,才应该在下次选择来临的时候作出维持现状的做法呢?

转载于:https://www.cnblogs.com/pureLaw/p/11213820.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值