Maximal Square

本文提供了一种寻找二维二进制矩阵中包含全1的最大正方形的方法,并详细解释了算法实现过程。通过动态规划思想,文章给出了具体实现代码,旨在帮助读者理解并掌握该算法。

Description:

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4.

Solution:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) {
        if (matrix.empty()) return 0;
        auto m = (int)matrix.size();
        auto n = (int)matrix[0].size();
        int maxSize = 0;
        vector<int> pre(n, 0);
        vector<int> cur(n, 0);
        for (int i = 0; i < n; ++i) {
            pre[i] = matrix[0][i]-'0';
            maxSize = max(maxSize, pre[i]);
        }
        for (int i = 1; i < m; ++i) {
            cur[0] = matrix[i][0]-'0';
            maxSize = max(maxSize, cur[0]);
            for (int j = 1; j < n; ++j) {
                if (matrix[i][j] == '1') {
                    cur[j] = min(cur[j-1], min(pre[j], pre[j-1]))+1;
                    maxSize = max(maxSize, cur[j]);
                } else cur[j] = 0;
            }
            pre = cur;
        }
    return maxSize*maxSize;
    }
};

转载于:https://www.cnblogs.com/deofly/p/maximal-square.html

内容概要:本文围绕无人机自主水下传感网络(UASNs)中自主水下航行器(AUV)的路径规划问题展开研究,提出采用遗传算法(Genetic Algorithm, GA)进行优化求解,并通过Matlab代码实现仿真验证。研究重点在于利用遗传算法的全局搜索能力,解决水下复杂环境中AUV的高效路径规划问题,提升数据采集效率与网络性能。文中详细阐述了问题建模、适应度函数设计、约束条件处理及算法实现流程,展示了GA在应对多目标、非线性、动态变化水下环境中的可行性与有效性。同时,文档还列举了大量相关科研方向与Matlab仿真实例,涵盖路径规划、电力系统、机器学习、通信优化等多个领域,体现出较强的技术综合性与科研指【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)导价值。; 适合人群:具备一定Matlab编程基础,从事智能优化算法、路径规划、水下传感网络或相关领域研究的研究生、科研人员及工程技术人员,尤其适合正在开展无人机、AUV或智能优化应用研究的1-5年经验研究人员。; 使用场景及目标:①学习遗传算法在复杂路径规划问题中的建模与实现方法;②掌握Matlab在UASNs与AUV路径规划中的仿真技术;③借鉴多领域科研案例拓展研究思路,推动算法在实际水下探测、环境监测、军事侦察等场景的应用。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注遗传算法的编码方式、交叉变异策略与适应度函数设计;同时可参考文中列出的其他研究方向进行横向拓展,强化对智能优化算法在多学科交叉应用的理解。
内容概要:本文围绕“考虑预测误差不确定性的风电预测研究”展开,重点探讨了在风电出力预测中如何有效处理预测误差的不确定性问题。研究采用Matlab代码实现,结合概率统计与智能算法,对风电预测误差进行建模与分析,可能引入如Copula理论、LSTM等方法刻画误差的时空相关性与非线性特征,从而提升预测精度与可靠性。文档还列举了多个相关科研方向及复现案例,涵盖负荷预测、综合能源系统优化、虚拟电厂调度等,展示了风电预测在能源系统中的广泛应用背景和技术支撑体系。; 适合人群:具备一定电力系统、可再生能源或数据科学基础的研究生、科【风电预测】考虑预测误差不确定性的风电预测研究(matlab代码实现)研人员及工程技术人员,熟悉Matlab编程且对预测建模有兴趣的研究者; 使用场景及目标:①用于科研学习与论文复现,深入理解风电预测中不确定性建模的方法;②应用于实际风电场出力预测系统开发,提高预测鲁棒性与决策支持能力;③作为智能电网、综合能源系统优化等项目的前期技术储备; 阅读建议:建议结合文中提及的LSTM、Copula等相关模型代码实例进行实践操作,重点关注误差建模与不确定性量化部分,配合网盘提供的完整资源进行调试与扩展,以深化对风电预测核心技术的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值