leetcode 221. Maximal Square

题目概述

解题思路

这道题看上去应该用动态规划求解。我一开始的思路就是:存储一个二维矩阵dp,dp[i][j]表示以(i, j)为顶点的能构建的最大正方形的边长。但是我在写递推公式的时候碰到了问题:

dp[i][j]显然和dp[i][j+1]、dp[i+1][j]、dp[i+1][j+1]相关,可是该怎么构建递推的关系呢?

我们不妨考虑dp[i+1][j]和dp[i+1][j+1]两者对dp[i][j]的影响(这个影响其实与dp[i][j+1]和dp[i+1][j+1]带来的影响是类似的)。我们现在要构建的递推公式,它的物理意义是说,考察加上dp[i][j]这个点以及从它出发的向下、向右两个方向最长能有多少个1用于构建最大正方形,如图1所示。

图1

首先当原矩阵A[i][j]的值为0时,显然dp[i][j] = 0。当A[i][j]为1时:

以dp[i+1][j]为例,现在它的值是1,如果它能利用上A[i][j]这个点构建出边长为2的正方形,就要确保A[i][j+1]和A[i+1][j+1]都为1。

更一般地,当dp[i+1][j]为n时,要想用上它作为(i, j)点包含的最大正方形,就要求A[i][j+1]-->A[i][j+n]和A[i+1][j+n]-->A[i+n][j+n]两部分都是1。

判断前者是否成立,就是判断dp[i][j+1]是否不小于n。判断后者是否成立,就是判断dp[i+1][j+1]是否不小于n。

假设dp[i+1][j+1]为n,那么要想利用上这个矩阵构建n+1为边长的、以(i, j)为顶点的最大正方形,就需要判断A[i+1][j]-->A[i+n][j]是否都是1,以及A[i][j+1]-->A[i][j+n]是否都是1。

判断前者等价于判断dp[i+1][j]是否不小于n,判断后者等价于判断dp[i][j+1]是否不小于n。

也就是说,实际上我们能取到的最大正方形,就是min(dp[i][j+1], dp[i+1][j], dp[i+1][j+1])再加上1。

由此得到递推公式:dp[i][j]=\left\{\begin{matrix} 0, \ if A[i][j] == 0, \\ min(dp[i][j+1], dp[i+1][j], dp[i+1][j+1]) + 1, otherwise. \end{matrix}\right.

算法性能

时间复杂度可以降至O(n^2),而空间复杂度也可以降至O(n),因为我们每次只用了前一层的结果。

O(n^2)时间复杂度 + O(n^2)的空间复杂度:

O(n^2)时间复杂度 + O(n)空间复杂度:

这道题可能体现不出来。。毕竟你可以直接在matrix矩阵上操作,无需申请额外的空间/(ㄒoㄒ)/

示例代码

O(n^2)时间复杂度 + O(n^2)的空间复杂度:

class Solution {
public:
    int maximalSquare(vector<vector<char>>& matrix) 
    {
        int R = matrix.size(), C = matrix[0].size(), res = 0;
        int **dp = new int*[R + 1];
        for(int i = 0; i < R + 1; ++i)
        {
            dp[i] = new int[C + 1];
            for(int j = 0; j < C + 1;++j)
            {
                dp[i][j] = 0;
            }
        }
        
        for(int i = R - 1; i >= 0; --i)
        {
            for(int j = C - 1; j >= 0; --j)
            {
                if(matrix[i][j] == '1')
                {
                    dp[i][j] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i + 1][j + 1]) + 1;
                    res = max(res, dp[i][j]);
                }   
            }
        }
        
        return res * res;
    }
};

O(n^2)时间复杂度 + O(n)空间复杂度:

class Solution {
public:
	int maximalSquare(vector<vector<char>>& matrix)
	{
		int R = matrix.size(), C = matrix[0].size(), res = 0;
		int *dp = new int[C + 1], temp1, temp2;
		for (int i = 0; i < C + 1; ++i)
			dp[i] = 0;

		for (int i = R - 1; i >= 0; --i)
		{
			temp2 = temp1 = 0;
			for (int j = C - 1; j >= 0; --j)
			{
				if (matrix[i][j] == '1')
					temp2 = min(min(dp[j + 1], dp[j]), temp1) + 1;
				else
					temp2 = 0;
				dp[j + 1] = temp1;
				temp1 = temp2;
				res = max(res, temp1);
			}
			dp[0] = temp1;
		}

		return res * res;
	}
};

第一次碰到这道题是在面试中,当时没能想出递推公式(这就是为啥我写递推公式的时候写得非常详细)_(:з」∠)_

我当时联想到的解法是最大矩形面积(不过这题是最大正方形)。用最大矩形面积去求的话,容易陷入的误区是,认为最大正方形一定包含在最大矩形中,这显然是不对的。

举个栗子:

1 1 0 0
1 1 1 0
1 1 1 0
1 1 1 0
1 1 0 0

上面矩阵的最大矩形面积是10(2 x 5),其中包含的最大正方形面积是4(2 x 2);而矩阵中的最大正方形面积是9(3 x 3)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值