【算法】KMP 中的 next 数组

本文详细介绍了KMP算法中next数组的作用、生成方法以及四种不同形式,包括基本形式、优化后的前缀表形式,以及通过整体右移和位操作简化实现的版本,同时分析了它们的时间和空间复杂度。
摘要由CSDN通过智能技术生成

1、next 数组的定义

next 数组(前缀表)是在 KMP 算法中使用到的,用于匹配模式串相同前后缀长度

它可以减少匹配次数,其原理是将模式串中每个子串的相同前后缀长度记录下来,当在文本串中匹配失败时,就根据前缀表——即 next 数组——找到模式串中匹配失败前一个字符的位置所对应的前缀尾字符,将模式串的指针移动到该字符

过程说明:

下标012345678
文本串aabaabaaf
模式串aabaaf
next 数组010120
  1. 当文本串和模式串的指针都指向 下标5 时,发现不匹配
  2. 查询到前缀表对应位置的 下标5 前一个值为 2
  3. 将模式串的指针移动到 下标2
  4. 继续匹配

2、next 数组的生成

next 数组有三种形式,其原理都是一样的,但是三种形式会导致 KMP 的具体实现发生变化

首先要统一一个认知:前缀指的是不含尾字符的子串,后缀指的是不含首字符的子串

而前缀表中存放的是从模式串首字符到以当前下标为尾字符的子串中,最长的相同前后缀长度

模式串aabaaf
子串1a
子串1最长相同前后缀0
子串2aa
子串2最长相同前后缀1
子串3aab
子串3最长相同前后缀0
子串4aaba
子串4最长相同前后缀1
子串5aabaa
子串5最长相同前后缀2
子串6aabaaf
子串6最长相同前后缀0

综上得出,模式串 “aabaaf” 的 next 数组 [0, 1, 0, 1, 2, 0]


3、next 数组的形式

上面说到 next 数组有四种形式,不同的形式会导致具体的 KMP 算法实现有所不同

  1. 数组各值为子串最长前后缀的长度
  2. 在1的基础上,整体右移一位,首位补 -1
  3. 在1的基础上,各值减一
  4. 在2的基础上,整体加一

第一种就是最基础的前缀表形式,其缺点明显:在取值时需要取当前下标前一个的值,并且无法区分首元素

第二种的目的就是解决上面两个缺点

第三种也是为了解决上面第一种的两个缺点,实现比第二种简单一点

第四种是为了适配下标从1开始的串(首字符存串的长度)


KMP 具体实现

第一种形式

public class KMP_1 {

    private static int[] getNext(char[] needleChars) {
        // 基础形式,不对前缀表进行优化
        // 生成 next 数组
        int[] next = new int[needleChars.length];
        // 1. 初始化
        // j 指向前缀的尾字符
        int j = 0;
        next[0] = j;
        // i 指向后缀的尾字符,从 1 开始
        for (int i = 1; i < needleChars.length; i++) {
            // 2. 处理前后缀不相同的情况
            while (j > 0 && needleChars[i] != needleChars[j]) {
                j = next[j - 1];
            }
            // 3. 处理前后缀相同的情况
            if (needleChars[i] == needleChars[j]) {
                j++;
            }
            next[i] = j;
        }
        return next;
    }

    public static int strStr(String haystack, String needle) {

        int[] next = getNext(needle.toCharArray());

        // i为文本串指针,j为模式串指针
        int j = 0;
        for (int i = 0; i < haystack.length(); i++) {
            while (j > 0 && haystack.charAt(i) != needle.charAt(j)) {
                j = next[j - 1];
            }
            if (haystack.charAt(i) == needle.charAt(j)) {
                j++;
            }
            if (j == needle.length()) {
                return i - j + 1;
            }
        }

        return -1;
    }

}

第二种形式

/**
 *  前缀表第二种形式
 *  整体右移一位,首位补-1
 */
public class KMP_2 {

    private static int[] getNext(char[] needleChars) {
        if (needleChars.length <= 1) {
            return new int[] {-1};
        }

        // 第二种形式,整体右移一位,首位补-1
        // 生成 next 数组
        int[] next = new int[needleChars.length];
        // 1. 初始化
        next[0] = -1;
        next[1] = 0;
        // j 指向前缀的尾字符
        int j = 0;
        // i 指向后缀的尾字符,从 1 开始
        for (int i = 1; i < needleChars.length - 1; i++) {
            // 2. 处理前后缀不相同的情况
            while (j > 0 && needleChars[i] != needleChars[j]) {
                j = next[j];
            }
            // 3. 处理前后缀相同的情况
            if (needleChars[i] == needleChars[j]) {
                j++;
            }
            next[i + 1] = j;
        }
        return next;
    }

    public static int strStr(String haystack, String needle) {

        int[] next = getNext(needle.toCharArray());

        // i为文本串指针,j为模式串指针
        int j = 0;
        for (int i = 0; i < haystack.length(); i++) {
            while (j > 0 && haystack.charAt(i) != needle.charAt(j)) {
                j = next[j];
            }
            if (haystack.charAt(i) == needle.charAt(j)) {
                j++;
            }
            if (j == needle.length()) {
                return i - j + 1;
            }
        }

        return -1;
    }
}

第三种形式

/**
 *  前缀表第三种形式
 *  各位减一
 */
public class KMP_3 {

    private static int[] getNext(char[] needleChars) {
        // 第三种形式,各位减一
        // 生成 next 数组
        int[] next = new int[needleChars.length];
        // 1. 初始化
        next[0] = -1;
        // j 指向前缀的尾字符
        int j = -1;
        // i 指向后缀的尾字符,从 1 开始
        for (int i = 1; i < needleChars.length; i++) {
            // 2. 处理前后缀不相同的情况
            while (j >= 0 && needleChars[i] != needleChars[j + 1]) {
                j = next[j];
            }
            // 3. 处理前后缀相同的情况
            if (needleChars[i] == needleChars[j + 1]) {
                j++;
            }
            next[i] = j;
        }
        return next;
    }

    public static int strStr(String haystack, String needle) {

        int[] next = getNext(needle.toCharArray());

        // i为文本串指针,j为模式串指针
        int j = -1;

        for (int i = 0; i < haystack.length(); i++) {
            while (j >= 0 && haystack.charAt(i) != needle.charAt(j + 1)) {
                j = next[j];
            }
            if (haystack.charAt(i) == needle.charAt(j + 1)) {
                j++;
            }
            if (j == needle.length() - 1) {
                return i - j;
            }
        }

        return -1;
    }

}

第四种不做解释


时间复杂度:O(n + m)

空间复杂度:O(m)

### KMP算法next数组的求解方法 KMP算法是一种高效的字符串匹配算法,其中`next`数组用于记录模式串中每个位置对应的最长相等前缀和后缀的长度。以下是关于如何计算`next`数组的具体说明: #### 1. `next`数组初始化 在计算`next`数组之前,需要对其进行初始化操作。通常情况下,`next[0]`被设置为 `-1` 或者 `0`,这取决于具体的实现方式[^1]。 ```cpp int next[LEN]; next[0] = -1; ``` 这种初始值的意义在于处理特殊情况下的回溯逻辑。如果第一个字符就发生失配,则可以直接跳过当前比较并继续寻找下一个可能的起始点。 #### 2. 双指针法构建`next`数组 通过双指针的方式逐步填充整个`next`数组。定义两个变量`i` 和 `j`分别作为主循环索引和辅助索引来完成这一过程: - **`i`:** 表示正在处理的模式串中的位置; - **`j`:** 记录的是上一次成功匹配到的最大公共前后缀结束处的位置; 具体流程如下所示: ```cpp void getNext(string p, int *next){ int i = 0, j = -1; next[0] = -1; while (i < p.length()){ if (j == -1 || p[i] == p[j]){ ++i; ++j; next[i] = j; // 当前状态转移至下一阶段 } else{ j = next[j]; // 失败时回退至上一最佳匹配点 } } } ``` 上述代码片段展示了完整的`getNext()`函数实现细节。每当遇到新的字符或者发现已有部分能够构成更长的有效子序列时都会更新相应的`next[]`项值。 #### 3. 关键特性解析 - **基础性质**: 对于任意给定位置k而言,在其前面的所有子串里找到最右侧且尽可能靠近该位的一个相同开头结尾的部分即可得到对应entry of array 'next'[k]. - **增长规律**: 每次迭代过程中要么维持不变(`p[i]==p[j]`)使得新加入的一对保持一致从而增加计数值;要么减少尝试回到先前已知较短但依然满足条件的状态下去探索更多可能性[`j=next[j]`]直到再次达成共识为止. - **独立性**: 特别值得注意的是尽管最终形成的整体结构依赖于全局信息但是每一个单独元素仅仅由它左侧范围内的局部数据决定出来所以可以顺序地一步步构造起来而无需顾虑后面尚未访问过的区域会对现在造成干扰影响[^2]. #### 示例分析 考虑一个简单的例子来加深理解:`abacababc`. | Index | Character | Longest Prefix Suffix Length (`next`) | |-------|-----------|--------------------------------------| | 0 | a | -1 | | 1 | b | 0 | | 2 | a | 0 | | 3 | c | 1 | | 4 | a | 1 | | 5 | b | 2 | | 6 | a | 2 | | 7 | b | 3 | | 8 | c | 4 | 在这个表格当中我们可以清晰看到随着输入逐渐扩展每一步是如何依据既存关系推导出来的结果[^3]. ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值