Poj_3304 Segments -线段与直线相交问题(问题转化)

题目:问是否存在一条直线,所有线段在这条直线上投影后至少有一个公共点。

吐槽:先承认,我一开始是按着题目意思去写的,枚举直线,但发现太慢了,最后搜题解才发现这个问题是可以转化的,刚开始打计算几何,涨知识了。

分析:分析方法:从结果去分析(别人博客说的)

      1、首先从题目的结果可以看出,最终所有线段的投影至少有一个公共点,那么我们将这公共点连起来不就是一条直线咯,还是一条经过所有线段的直线。

          So,问题转化成求是否存在一条直线经过所有线段。

      2、然而现在并没有一个可行的方案可以枚举直线,所以我们想想啊,虽然有一条直线经过了所有线段,但是它还可以稍微旋转一些,然后旋啊旋,会发现直线某个位置被某条线段的端点卡住了不能动了,….,最后发现直线完全不能动的时候,直线至少被两个点卡住,而这些点包含了线段的端点。soga,那么就可以枚举线段端点啦。

备注:神器-Cross(叉积)

/************************************************
Author        :DarkTong
Created Time  :2016/8/3 20:36:00
File Name     :Poj_3304.cpp
*************************************************/

//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

#define eps 1e-8
typedef double Db;

struct Point
{
    Db x, y;
    Point(Db x=0, Db y=0):x(x), y(y){}
}C;
typedef Point Vector;
//向量或点的四则运算
Vector operator + (Vector A, Vector B){ return Vector(A.x+B.x, A.y+B.y);}
Vector operator - (Vector A, Vector B){ return Vector(A.x-B.x, A.y-B.y);}
Vector operator * (Vector A, Db p){ return Vector(A.x*p, A.y*p);}
int dcmp(Db x){    if(fabs(x)<eps) return 0; else return x<0 ? -1 : 1;}
Db Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y;}    /*点积: 角度分布:>0(-90, 90), ==0(90或-90), <0((-180,90)或(90,180])*/
Db Cross(Vector A, Vector B){ return A.x*B.y - A.y*B.x;}    /*叉积(判<180的角): ==0(共线), >0(逆时针*/
//判断点是否在线段上
/*****************************************************************************/
const int maxn = 100 + 10;
int n, np;
Point line[maxn][2], poi[maxn*2];
bool solve()
{
    for(int i=0;i<np;++i)
    {
        for(int j=i+1;j<np;++j)
        {
            Vector v = poi[j]-poi[i];
            if(dcmp(v.x)==0&&dcmp(v.y)==0) continue;
            Point P = poi[i];
            int f=1;
            for(int k=0;k<n;++k)
            {
                int k1 = dcmp(Cross(line[k][0]-P, v));
                int k2 = dcmp(Cross(v, line[k][1]-P));
                if(k1*k2<0)
                {
                    f=0; break;
                }
            }
            if(f) return true;
        }
    }
    return false;
}

int main()
{
    int T, cas=1;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n); np=0;
        for(int i=0;i<n;++i) 
        {
            scanf("%lf%lf%lf%lf", &line[i][0].x, &line[i][0].y, &line[i][1].x, &line[i][1].y);
            poi[np++]=line[i][0];
            poi[np++]=line[i][1];
        }
        if(solve()) puts("Yes!");
        else puts("No!");
    }

    
    return 0;
}

转载于:https://www.cnblogs.com/DarkTong/p/5734905.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值