9.13 染上你的颜色

题意

给定一颗有根带权树,记\(LCA(u,v)\)\(u,v\)的最近公共祖先,\(dis(u)\)表示树根到\(u\)的距离

每个节点可以是黑色或白色,初始结点颜色为白色

\(m\)次操作,操作分为两种

  • 将结点\(x\)染成黑色

  • 记所有黑点形成的集合为\(S\)与一个节点\(x\),求出下面式子的值
    \[ \sum_{y \in S}F(dis(LCA(u,v))) \]
    其中函数\(F\)定义为
    \[ F(x)=\sum_{i=1}^x i^k \]

解法

朴素的暴力是求取\(x\)\(S\)中点的\(LCA\)并进行计算

我们考虑换一种角度,考虑\(LCA\)的贡献

\(x\)\(S\)中点的\(LCA\)一定位于由\(x\)到树根的这一条路径上

对于每个修改操作,我们把由\(x\)到根的这条路径都打上标记(即加一)

每次查询就查询\(x\)到根上的路径的标记之和即可

为了保证复杂度,我们用树链剖分来处理

由于在修改时,我们将\(x\)到根的一整条路径上的标记都加了一,但对于点\(x\)来说,真正有意义的只是\(LCA(x,S_i)\)上的那一个标记,所以由根到\(fa[LCA(x,S_i)]\)上的标记实际上是不合法的

为了结局这个问题,我们可以把每个节点的权值设为\(F(dis(x))-F(dis(fa[x]))\)

这样求出来的和就只会计算到合法标记的贡献

为什么这样做是对的呢?这实际上是一个差分的操作

把差分数组的\([l,r]\)区间均加上\(1\),在求前缀和意义下实际上就是在\(a_l\)处加上了\(1\)

还要注意\(F\)函数要用线性筛进行预处理

代码

#include <cstdio>

using namespace std;

const int N = 2e5 + 10;
const int mod = 998244353;

int read();

int n, m, k;

const int MAX_N = 1e7 + 10;

int pri[MAX_N], is[MAX_N], func[MAX_N];

int qpow(int x, int y) {
    int res = 1;
    for (; y; y >>= 1, x = 1LL * x * x % mod)
        if (y & 1)  res = 1LL * res * x % mod;
    return res; 
}

void sieve() {
    int cnt = 0; func[1] = 1;
    for (int i = 2; i < MAX_N; ++i) {
        if (!is[i]) pri[++cnt] = i, func[i] = qpow(i, k);
        for (int j = 1; j <= cnt; ++j) {
            if (i * pri[j] >= MAX_N)  break;
            is[i * pri[j]] = 1;
            func[i * pri[j]] = 1LL * func[i] * func[pri[j]] % mod;
            if (i % pri[j] == 0)      break;
        }
    }
    
    for (int i = 1; i < MAX_N; ++i)
        func[i] = (func[i] + func[i - 1]) % mod;
}

int cap;
int head[N], to[N], nxt[N], val[N];

inline void add(int x, int y, int z) { 
    to[++cap] = y, nxt[cap] = head[x], head[x] = cap, val[cap] = z;
}

int ind;

int sz[N], dep[N], fa[N];
int top[N], son[N], ver[N], id[N];

void DFS(int x) {
    sz[x] = 1;
    for (int i = head[x]; i; i = nxt[i]) {
        dep[to[i]] = dep[x] + val[i], fa[to[i]] = x, DFS(to[i]), sz[x] += sz[to[i]];
        if (sz[to[i]] > sz[son[x]])  son[x] = to[i];
    }
//  printf("data: %d %d\n", x, son[x]);
}

void DFS(int x, int tp) {
    top[x] = tp, id[x] = ++ind, ver[ind] = func[dep[x]] - func[dep[fa[x]]];
    if (son[x]) {
        DFS(son[x], tp);
        for (int i = head[x]; i; i = nxt[i])
            if (!id[to[i]])  DFS(to[i], to[i]);
    }
}

struct SegTree {
#define ls(x) x << 1
#define rs(x) x << 1 | 1

    struct node {
        int val, sum, tag;
        node() : val(0), tag(0), sum(0) {}
    } t[N << 2];
    
    void build(int x, int l, int r) {
        if (l == r)
            return t[x].val = ver[l], void();
        int mid = l + r >> 1;
        build(ls(x), l, mid);
        build(rs(x), mid + 1, r);   
        t[x].val = (t[ls(x)].val + t[rs(x)].val) % mod;
    }
    
    void addtag(int x, int v) {
        t[x].sum = (t[x].sum + 1LL * v * t[x].val % mod + mod) % mod;
        t[x].tag = (t[x].tag + v) % mod;
    }
    
    void pushdown(int x) {
        if (t[x].tag) {
            addtag(ls(x), t[x].tag);
            addtag(rs(x), t[x].tag);
            t[x].tag = 0;
        }
    }
    
    void modify(int x, int l, int r, int ql, int qr) {
        if (ql <= l && r <= qr) 
            return addtag(x, 1), void();
        int mid = l + r >> 1;
        pushdown(x);
        if (ql <= mid)
            modify(ls(x), l, mid, ql, qr);
        if (qr > mid)
            modify(rs(x), mid + 1, r, ql, qr);
        t[x].sum = (t[ls(x)].sum + t[rs(x)].sum) % mod;
    }
    
    int query(int x, int l, int r, int ql, int qr) {
        if (ql <= l && r <= qr)
            return t[x].sum;
        int mid = l + r >> 1, res = 0;
        pushdown(x);    
        if (ql <= mid)
            res = (res + query(ls(x), l, mid, ql, qr)) % mod;
        if (qr > mid)
            res = (res + query(rs(x), mid + 1, r, ql, qr)) % mod;
        return res;
    }
    
#undef ls
#undef rs
} tr;

void change(int x) {
    while (x) {
        tr.modify(1, 1, n, id[top[x]], id[x]);
        x = fa[top[x]];
    }
}

int ask(int x) {
    int res = 0;
    while (x) {
        res = (res + tr.query(1, 1, n, id[top[x]], id[x])) % mod;
        x = fa[top[x]];
    }
    return res;
}

int vis[N];

int main() {
    
    n = read(), m = read(), k = read();
    for (int i = 2; i <= n; ++i) {
        int u = read(), v = read();
        add(u, i, v);   
    }
    
    sieve();
    
    DFS(1); 
    DFS(1, 1);
    
    tr.build(1, 1, n);
    
    while (m--) {
        int op = read(), x = read();
        if (op == 1) {
            if (vis[x]) continue;
            vis[x] = 1;
            change(x);
        } else 
            printf("%d\n", ask(x)); 
    }
    
    return 0;
}

int read() {
    int x = 0, c = getchar();
    while (c < '0' || c > '9')    c = getchar();
    while (c >= '0' && c <= '9')  x = x * 10 + c - 48, c = getchar();
    return x;   
}

转载于:https://www.cnblogs.com/VeniVidiVici/p/11519956.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
weixin102旅游社交微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值