The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online Solution

A    Live Love

水。

 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 typedef long long ll;
 6 const double eps = 1e-8;
 7 const int INF = 0x3f3f3f3f;
 8 const ll MOD = (int)1e9 + 7;
 9 const int maxn = (int)1e6 + 10;
10 
11 int n, m;
12 
13 inline void RUN()
14 {
15     int t;
16     scanf("%d", &t);
17     while (t--)
18     {
19         scanf("%d %d", &n, &m);
20         int ans1 = m;
21         int ans2 = (n) / (n - m + 1);
22         printf("%d %d\n", ans1, ans2);
23     }
24 }
25 
26 int main()
27 {
28 #ifdef LOCAL_JUDGE
29     freopen("Text.txt", "r", stdin);
30 #endif // LOCAL_JUDGE
31 
32     RUN();
33 
34 #ifdef LOCAL_JUDGE
35     fclose(stdin);
36 #endif // LOCAL_JUDGE
37     return 0;
38 }
View Code

 

B Red Black Tree

题意:有一个树,上面有红点和黑点,有边权,每个点的花费定义为它到离它最近的红点的距离,每次询问给出一些点,能够将这棵树中的一个黑点变为红点,使得这些点中的最大花费最小

思路:二分答案,符合条件的点不管,将不符合条件的点LCA求出来,变红,然后算距离

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 
  4 #define N 100010
  5 #define ll long long
  6 #define INFLL 0x3f3f3f3f3f3f3f3f
  7 
  8 struct Edge
  9 {
 10     int to, nx; ll w;
 11     inline Edge() {}
 12     inline Edge(int to, int nx, ll w) : to(to), nx(nx), w(w) {}
 13 }edge[N << 1];
 14 
 15 int t, n, m, q, k;
 16 int isred[N], prered[N], head[N], arr[N], pos;
 17 int rmq[N << 1], F[N << 1], P[N], deep[N], cnt; 
 18 ll dist[N]; 
 19 
 20 inline void Init()
 21 {
 22     memset(head, -1, sizeof head); pos = 0;
 23     memset(isred, 0, sizeof isred);  deep[1] = 0;
 24 }
 25 
 26 inline void addedge(int u, int v, ll w)
 27 {
 28     edge[++pos] = Edge(v, head[u], w); head[u] = pos;
 29 }
 30 
 31 struct ST
 32 {
 33     int mm[N << 1];
 34     int dp[N << 1][20];
 35     inline void init(int n)
 36     {
 37         mm[0] = -1;
 38         for (int i = 1; i <= n; ++i)
 39         {
 40             mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
 41             dp[i][0] = i;
 42         }
 43         for (int j = 1; j <= mm[n]; ++j)
 44         {
 45             for (int i = 1; i + (1 << j) - 1 <= n; ++i)
 46             {
 47                 dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
 48             }
 49         }
 50     }
 51     inline int query(int a, int b)
 52     {
 53         if (a > b) swap(a, b);
 54         int k = mm[b - a + 1];
 55         return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
 56     }
 57 }st;
 58 
 59 inline void DFS(int u, int pre, int prer)
 60 {
 61     F[++cnt] = u;
 62     rmq[cnt] = deep[u];
 63     P[u] = cnt;
 64     prered[u] = prer;  
 65     for (int it = head[u]; ~it; it = edge[it].nx)
 66     {
 67         int v = edge[it].to;
 68         if (v == pre) continue;
 69         if (isred[v]) dist[v] = 0;
 70         else dist[v] = dist[u] + edge[it].w;
 71         deep[v] = deep[u] + 1;
 72         DFS(v, u, isred[v] ? v : prer);
 73         F[++cnt] = u;
 74         rmq[cnt] = deep[u];
 75     }
 76 }
 77 
 78 inline void Lca_Init(int root, int node_num)
 79 {
 80     cnt = 0;
 81     DFS(root, root, 1);
 82     st.init(2 * node_num - 1);
 83 }
 84 
 85 inline int query_lca(int u, int v)
 86 {
 87     return F[st.query(P[u], P[v])];
 88 }
 89 
 90 vector <int> v; 
 91 inline bool check(ll mid)
 92 {
 93     v.clear();
 94     for (int i = 1; i <= k; ++i)
 95     {
 96         if (dist[arr[i]] > mid)
 97             v.emplace_back(arr[i]);
 98     }
 99     if (v.empty()) return true; 
100     int lca = v[0];
101     for (int i = 1, len = v.size(); i < len; ++i)
102         lca = query_lca(lca, v[i]);
103     if (isred[lca]) return false;  
104     for (auto it : v)
105     {
106         if (deep[lca] < deep[prered[it]]) return false; 
107         else if (dist[it] - dist[lca] > mid) return false;  
108     }
109     return true;
110 }
111 
112 inline void Run() 
113 {
114     for (scanf("%d", &t); t--; )
115     {
116         scanf("%d%d%d", &n, &m, &q); Init();
117         for (int i = 1, u; i <= m; ++i)
118         {
119             scanf("%d", &u);
120             isred[u] = 1;
121         }
122         ll w;
123         for (int i = 1, u, v; i < n; ++i)
124         {
125             scanf("%d%d%lld", &u, &v, &w);
126             addedge(u, v, w); addedge(v, u, w);
127         }
128         Lca_Init(1, n);
129         for (int qq = 1; qq <= q; ++qq)
130         {
131             scanf("%d", &k);
132             for (int i = 1; i <= k; ++i) scanf("%d", arr + i); 
133             if (k == 1)
134             {
135                 puts("0");
136                 continue;
137             }
138             ll l = 0, r = INFLL, ans; 
139             while (r - l >= 0)
140             {
141                 ll mid = (l + r) >> 1;
142                 if (check(mid))
143                 {
144                     ans = mid;
145                     r = mid - 1;
146                 }
147                 else
148                     l = mid + 1;
149             }
150             printf("%lld\n", ans);
151         }
152     }
153 }
154 
155 int main()
156 {
157     #ifdef LOCAL  
158         freopen("Test.in", "r", stdin); 
159     #endif    
160         
161     Run();
162     return 0;
163 }  
View Code

 愚蠢的倍增求LCA(排序一下)

  1 #include<bits/stdc++.h>
  2 
  3 using namespace std;
  4 
  5 typedef long long ll;
  6 
  7 const int INF = 0x3f3f3f3f;
  8 const ll INFLL = 0x3f3f3f3f3f3f3f3f;
  9 const ll MOD = (int)1e9 + 7;
 10 const int maxn = (int)1e5 + 10;
 11 
 12 const int DEG = 20;
 13 
 14 struct Edge {
 15     int to, nxt;
 16     ll w;
 17     inline Edge(){}
 18     inline Edge(int to,int nxt,ll w):to(to),nxt(nxt),w(w){}
 19 }edge[maxn << 1];
 20 
 21 int head[maxn], tot;
 22 int red[maxn];
 23 
 24 inline void addedge(int u, int v, ll w)
 25 {
 26     edge[tot] = Edge(v, head[u], w); head[u] = tot++;
 27 }
 28 
 29 inline void Init(int n)
 30 {
 31     for (int i = 1; i <= n; ++i)
 32     {
 33         red[i] = 0;
 34         head[i] = -1;
 35     }
 36     tot = 0;
 37 }
 38 
 39 ll dis[maxn];
 40 int fa[maxn][DEG];
 41 int deg[maxn];
 42 int pre[maxn];
 43 
 44 inline void BFS(int root)
 45 {
 46     queue<int>q;
 47     dis[root] = 0;
 48     deg[root] = 0;
 49     fa[root][0] = root;
 50     pre[root] = root;
 51     q.push(root);
 52     while (!q.empty())
 53     {
 54         int tmp = q.front();
 55         q.pop();
 56         for (int i = 1; i < DEG; ++i)
 57         {
 58             fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
 59         }
 60         for (int i = head[tmp]; ~i; i = edge[i].nxt)
 61         {
 62             int v = edge[i].to;
 63             ll w = edge[i].w;
 64             if (v == fa[tmp][0]) continue;
 65             deg[v] = deg[tmp] + 1;
 66             fa[v][0] = tmp;
 67             if (red[v])
 68             {
 69                 pre[v] = v;
 70             }
 71             else
 72             {
 73                 pre[v] = pre[tmp];
 74             }
 75             if (red[v])
 76             {
 77                 dis[v] = 0;
 78             }
 79             else
 80             {
 81                 dis[v] = dis[tmp] + w;
 82             }
 83             q.push(v);
 84         }
 85     }
 86 }
 87 
 88 inline int LCA(int u, int v)
 89 {
 90     if (deg[u] > deg[v]) swap(u, v);
 91     int hu = deg[u], hv = deg[v];
 92     int tu = u, tv = v;
 93     for (int det = hv - hu, i = 0; det; det >>= 1, ++i)
 94     {
 95         if (det & 1)
 96         {
 97             tv = fa[tv][i];
 98         }
 99     }
100     if (tu == tv) return tu;
101     for (int i = DEG - 1; i >= 0; --i)
102     {
103         if (fa[tu][i] == fa[tv][i]) continue;
104         tu = fa[tu][i], tv = fa[tv][i];
105     }
106     return fa[tu][0];
107 }
108 
109 int n, m, q, k;
110 int arr[maxn];
111 
112 inline bool cmp(int a, int b)
113 {
114     return dis[a] > dis[b];
115 }
116 
117 inline bool check(ll mid)
118 {
119     int root = arr[1];
120     int cnt = 0;
121     for (int i = 1; i <= k; ++i)
122     {
123         if (dis[arr[i]] > mid)
124         {
125             if (pre[root] != pre[arr[i]]) return false;
126             root = LCA(root, arr[i]);
127             cnt++;
128         }
129     }
130     if (cnt == 1 || cnt == 0) return true;
131     for (int i = 1; i <= k; ++i)
132     {
133         if (dis[arr[i]] > mid)
134         {
135             if (dis[arr[i]] - dis[root] > mid) return false;
136         }
137     }
138     return true;
139 }
140 
141 inline void RUN()
142 {
143     int t;
144     scanf("%d", &t);
145     while (t--)
146     {
147         scanf("%d %d %d", &n, &m, &q);
148         Init(n);
149         for (int i = 1; i <= m; ++i)
150         {
151             int u;
152             scanf("%d", &u);
153             red[u] = 1;
154         }
155         for (int i = 1; i < n; ++i)
156         {
157             int u, v;
158             ll w;
159             scanf("%d %d %lld", &u, &v, &w);
160             addedge(u, v, w);
161             addedge(v, u, w);
162         }
163         BFS(1);
164         while (q--)
165         {
166             scanf("%d", &k);
167             for (int i = 1; i <= k; ++i)
168             {
169                 scanf("%d", arr + i);
170             }
171             if (k == 1)
172             {
173                 puts("0");
174                 continue;
175             }
176             sort(arr + 1, arr + 1 + k, cmp);
177             ll l = 0;
178             ll r = INFLL;
179             ll ans = 0;
180             while (r - l >= 0)
181             {
182                 ll mid = (r + l) >> 1;
183                 if (check(mid))
184                 {
185                     r = mid - 1;
186                     ans = mid;
187                 }
188                 else
189                 {
190                     l = mid + 1;
191                 }
192             }
193             printf("%lld\n", ans);
194         }
195     }
196 }
197 
198 int main()
199 {
200 #ifdef LOCAL_JUDGE
201     freopen("Text.txt", "r", stdin);
202 #endif // LOCAL_JUDGE
203 
204     RUN();
205 
206 #ifdef LOCAL_JUDGE
207     fclose(stdin);
208 #endif // LOCAL_JUDGE
209     return 0;
210 }
View Code

 

 

 

C Halting Problem

题意:给出五种操作,机器从第一条命令开始,问是否能到n+1条命令。

思路:暴力,记录状态,若来到重复状态则输出No

  1 #include<bits/stdc++.h>
  2 
  3 using namespace std;
  4 
  5 typedef long long ll;
  6 const double eps = 1e-8;
  7 const int INF = 0x3f3f3f3f;
  8 const ll MOD = (int)1e9 + 7;
  9 const int maxn = (int)1e4 + 10;
 10 
 11 int n, num;
 12 int vis[maxn][260];
 13 struct node {
 14     char op[10];
 15     int v, k;
 16 }arr[maxn];
 17 
 18 inline void RUN()
 19 {
 20     int t;
 21     scanf("%d", &t);
 22     while (t--)
 23     {
 24         scanf("%d", &n);
 25         for (int i = 1; i <= n; ++i)
 26         {
 27             for (int j = 0; j < 256; ++j)
 28             {
 29                 vis[i][j] = 0;
 30             }
 31         }
 32         int flag = true;
 33         int s = 0;
 34         int now = 1;
 35         for (int i = 1; i <= n; ++i)
 36         {
 37             scanf("%s", arr[i].op);
 38             if (strcmp(arr[i].op,"add") == 0)
 39             {
 40                 scanf("%d", &arr[i].v);
 41                 arr[i].k = 0;
 42             }
 43             else
 44             {
 45                 scanf("%d %d", &arr[i].v, &arr[i].k);
 46             }
 47         }
 48         while (1)
 49         {
 50             if (now == n + 1)
 51             {
 52                 flag = true;
 53                 break;
 54             }
 55             if (vis[now][s])
 56             {
 57                 flag = false;
 58                 break;
 59             }
 60             vis[now][s]++;
 61             if (strcmp(arr[now].op, "add") == 0)
 62             {
 63                 s = (s + arr[now].v);
 64                 if (s >= 256)s -= 256;
 65                 now++;
 66             }
 67             else if (strcmp(arr[now].op, "beq") == 0)
 68             {
 69                 if (s == arr[now].v)
 70                 {
 71                     now = arr[now].k;
 72                 }
 73                 else
 74                 {
 75                     now++;
 76                 }
 77             }
 78             else if (strcmp(arr[now].op, "bne") == 0)
 79             {
 80                 if (s != arr[now].v)
 81                 {
 82                     now = arr[now].k;
 83                 }
 84                 else
 85                 {
 86                     now++;
 87                 }
 88             }
 89             else if (strcmp(arr[now].op, "blt") == 0)
 90             {
 91                 if (s < arr[now].v)
 92                 {
 93                     now = arr[now].k;
 94                 }
 95                 else
 96                 {
 97                     now++;
 98                 }
 99             }
100             else if (strcmp(arr[now].op, "bgt") == 0)
101             {
102                 if (s > arr[now].v)
103                 {
104                     now = arr[now].k;
105                 }
106                 else
107                 {
108                     now++;
109                 }
110             }
111         }
112         puts(flag ? "Yes" : "No");
113     }
114 }
115 
116 int main()
117 {
118 #ifdef LOCAL_JUDGE
119     freopen("Text.txt", "r", stdin);
120 #endif // LOCAL_JUDGE
121 
122     RUN();
123 
124 #ifdef LOCAL_JUDGE
125     fclose(stdin);
126 #endif // LOCAL_JUDGE
127     return 0;
128 }
View Code

 

 

D Pixel Art

留坑。

 

E Infinite Parenthesis Sequence

留坑。

 

F Chaleur

留坑。

 

G Couleur

题意:每次标记一个数不可用,那么就将原数组分成多一段,然后找出子数组中异或最大。

思路:每次划分成两边,对小的那边暴力,可以用set 来找左界右界,map 来找出当前界中的值  multiset 找最大值

  1 #include <bits/stdc++.h>
  2 using namespace std; 
  3 
  4 #define N 100010
  5 #define M N * 30  
  6 using ll = long long; 
  7 using pii = pair <int, int>; 
  8 
  9 int t, n;
 10 set <int> s; 
 11 multiset <ll> mst; 
 12 map <pii, ll> mp; 
 13 int arr[N], p[N];  
 14 ll ans;
 15 
 16 struct BIT 
 17 {
 18     int a[N];  
 19     inline void update(int x)
 20     {  
 21         for (int i = x; i <= n; i += i & -i)
 22             ++a[i];
 23     }  
 24     inline int query(int x)
 25     { 
 26         int res = 0;
 27         for (int i = x; i > 0; i -= i & -i)
 28             res += a[i];
 29         return res;
 30     }  
 31 }bit; 
 32 
 33 struct chairman_tree
 34 {
 35     int T[N], L[M], R[M], C[M], tot;
 36     inline int build(int l, int r)
 37     {
 38         int root = tot++;
 39         C[root] = 0;
 40         if (l < r)
 41         {
 42             int mid = (l + r) >> 1; 
 43             L[root] = build(l, mid);
 44             R[root] = build(mid + 1, r);
 45         }
 46         return root;
 47     }
 48     inline int update(int root, int pos)
 49     {
 50         int newroot = tot++, tmp = newroot;
 51         C[newroot] = C[root] + 1;
 52         int l = 1, r = n;
 53         while (l < r)
 54         {
 55             int mid = (l + r) >> 1;
 56             if (pos <= mid)
 57             {
 58                 L[newroot] = tot++; R[newroot] = R[root];
 59                 newroot = L[newroot], root = L[root];
 60                 r = mid;
 61             }
 62             else
 63             {
 64                 L[newroot] = L[root], R[newroot] = tot++;
 65                 newroot = R[newroot], root = R[root];
 66                 l = mid + 1; 
 67             }
 68             C[newroot] = C[root] + 1; 
 69         }
 70         return tmp;
 71     }
 72     inline int query(int left_root, int right_root, int pos, int vis)
 73     {
 74         int l = 1, r = n, res = 0;
 75         while (l < r)
 76         {
 77             int mid = (l + r) >> 1;
 78             if (pos <= mid)
 79             {
 80                 left_root = L[left_root];
 81                 right_root = L[right_root];
 82                 r = mid;
 83             }
 84             else
 85             {
 86                 res += C[L[left_root]] - C[L[right_root]];
 87                 left_root = R[left_root];
 88                 right_root = R[right_root];
 89                 l = mid + 1;
 90             }
 91         }
 92         if (vis) res += C[left_root] - C[right_root];
 93         return res;   
 94     }
 95 }ct; 
 96 
 97 inline void Init()
 98 {
 99     memset(bit.a, 0, sizeof bit.a); ct.tot = 0;
100     s.clear(), mst.clear(), mp.clear(); ans = 0;
101     s.emplace(0), s.emplace(n + 1);
102     ct.T[n + 1] = ct.build(1, n); 
103 }
104 
105 inline void Run()
106 {
107     for (scanf("%d", &t); t--; )
108     {
109         scanf("%d", &n); Init();
110         for (int i = 1; i <= n; ++i)
111         {
112             scanf("%d", arr + i);
113             bit.update(arr[i]);
114             ans += i - bit.query(arr[i]);
115         }
116         for (int i = 1; i <= n; ++i) scanf("%d", p + i);
117         for (int i = n; i >= 1; --i) ct.T[i] = ct.update(ct.T[i + 1], arr[i]);
118         mp[pii(1, n)] = ans; mst.insert(ans);
119         for (int i = 1; i <= n; ++i)
120         {
121             printf("%lld%c", ans, " \n"[i == n]);
122             if (ans)
123             {
124                 int id = int(ans ^ p[i]), l, r;
125                 l = *(--s.upper_bound(id)) + 1; 
126                 r = *(s.upper_bound(id)) - 1; s.insert(id);
127                 ll val = mp[pii(l, r)];
128                 mst.erase(mst.lower_bound(val));  
129                 mp.erase(pii(l, r)); 
130                 val -= id - l - ct.query(ct.T[l], ct.T[id], arr[id], 1);
131                 if (id - l < r - id) // goto left   
132                 {
133                     for (int j = l; j <= id; ++j)
134                         val -= ct.query(ct.T[id + 1], ct.T[r + 1], arr[j], 0);
135                     ll vall = 0, valr = 0;
136                     for (int j = l + 1; j < id; ++j)
137                         vall += j - l - ct.query(ct.T[l], ct.T[j], arr[j], 1);
138                     valr = val - vall;
139                     mst.insert(vall), mst.insert(valr);
140                     mp[pii(l, id - 1)] = vall; mp[pii(id + 1, r)] = valr;
141                 }
142                 else   // goto right                     
143                 {
144                     for (int j = id + 1; j <= r; ++j)
145                         val -= id - l + 1 - ct.query(ct.T[l], ct.T[id + 1], arr[j], 1);
146                     ll vall = 0, valr = 0; 
147                     for (int j = id + 1; j <= r; ++j)
148                         valr += j - id - 1 - ct.query(ct.T[id + 1], ct.T[j], arr[j], 1);
149                     vall = val - valr;
150                     mst.insert(vall), mst.insert(valr);
151                     mp[pii(l, id - 1)] = vall; mp[pii(id + 1, r)] = valr;
152                 }
153                 ans = *(mst.rbegin());
154             }
155         }
156     }
157 }
158 
159 int main()
160 {
161     #ifdef LOCAL  
162         freopen("Test.in", "r", stdin);
163     #endif    
164 
165     Run();
166     return 0;
167 }  
View Code

 

 

H Traveling on the Axis

题意:一个字符串表示当前点是红灯还是绿灯,灯一秒变一次,求$\sum_{p = 0}^{n - 1}\sum_{q = p +1}^{n} t(p, q)$

思路:前缀搞一搞

 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 char st[100000+10];
 6 long long f[100000+10];
 7 int main() {
 8     long long t,n,i,j,k;
 9     long long ans;
10     scanf("%lld",&t);
11     while (t--) {
12         scanf("%s",st);
13         n=strlen(st);
14         f[1]=1; ans=0;
15         for (i=1;i<n;++i) 
16             if (st[i]==st[i-1]) f[i+1]=2;
17             else f[i+1]=1;
18         for (i=1;i<=n;++i) {
19             ans+=(f[i])*i*(n-i+1);
20             if (st[i-1]=='0') ans+=n-i+1;
21             if (f[i]==2) ans-=n-i+1;
22         }
23         printf("%lld\n",ans);
24     }
25     return 0;
26 }
View Code

 

J Press the Button

题意:周期性按灯,每按一次,如果灯本来是亮着就++, 求最后+了多少次

思路:记录lcm时间内的增加次数以及t%lcm时间内的增加次数。用两个时间节点记录两人下次按的时间,然后暴力跑出lcm以及t%lcm时间内的增加次数即可

  1 #include<bits/stdc++.h>
  2 
  3 using namespace std;
  4 
  5 typedef long long ll;
  6 const double eps = 1e-8;
  7 const int INF = 0x3f3f3f3f;
  8 const ll MOD = (int)1e9 + 7;
  9 const int maxn = (int)1e4 + 10;
 10 
 11 inline ll gcd(ll a, ll b)
 12 {
 13     return b == 0 ? a : gcd(b, a%b);
 14 }
 15 
 16 ll a, b, c, d, v, t;
 17 
 18 inline void RUN()
 19 {
 20     int cas;
 21     scanf("%d", &cas);
 22     while (cas--)
 23     {
 24         scanf("%lld %lld %lld %lld %lld %lld", &a, &b, &c, &d, &v, &t);
 25         ll G = gcd(a, c);
 26         G = a * c / G;
 27         //cout << G << endl;
 28         ll res =0;
 29         ll res1 =  b - 1 + d;
 30         ll len = t / G;
 31         ll M = t % G;
 32         ll t1 = a;
 33         ll t2 = c;
 34         ll now = 0;
 35         while (t1 <= G && t2 <= G)
 36         {
 37             if (t1 < t2)
 38             {
 39                 ll tmp = t1 - now;
 40                 if (tmp > v)
 41                 {
 42                     res += b - 1;
 43                     if (t1 <= M)
 44                     {
 45                         res1 += b - 1;
 46                     }
 47                 }
 48                 else
 49                 {
 50                     res += b;
 51                     if (t1 <= M)
 52                     {
 53                         res1 += b;
 54                     }
 55                 }
 56                 now = t1;
 57                 t1 += a;
 58 
 59             }
 60             else if (t1 > t2)
 61             {
 62                 ll tmp = t2 - now;
 63                 if (tmp > v)
 64                 {
 65                     res += d - 1;
 66                     if (t2 <= M)
 67                     {
 68                         res1 += d - 1;
 69                     }
 70                 }
 71                 else
 72                 {
 73                     res += d;
 74                     if (t2 <= M)
 75                     {
 76                         res1 += d;
 77                     }
 78                 }
 79                 now = t2;
 80                 t2 += c;
 81             }
 82             else if (t1 == t2)
 83             {
 84                 ll tmp = t1 - now;
 85                 if (tmp > v)
 86                 {
 87                     res += b + d - 1;
 88                     if (t1 <= M)
 89                     {
 90                         res1 += b + d - 1;
 91                     }
 92                 }
 93                 else
 94                 {
 95                     res += b + d;
 96                     if (t1 <= M)
 97                     {
 98                         res1 += b + d;
 99                     }
100                 }
101                 now = t1;
102                 t1 += a;
103                 t2 += c;
104 
105             }
106         }
107         ll ans = res * len + res1;
108         printf("%lld\n", ans);
109     }
110 }
111 
112 int main()
113 {
114 #ifdef LOCAL_JUDGE
115     freopen("Text.txt", "r", stdin);
116 #endif // LOCAL_JUDGE
117 
118     RUN();
119 
120 #ifdef LOCAL_JUDGE
121     fclose(stdin);
122 #endif // LOCAL_JUDGE
123     return 0;
124 }
View Code

 

K XOR Clique

题意:给出n个数,求选出一个点集,使得里面的点两两异或不超过这两个数中小的那个,求点集里面元素个数最大是多少

思路:枚举最高位

 1 #include<bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 typedef long long ll;
 6 const double eps = 1e-8;
 7 const int INF = 0x3f3f3f3f;
 8 const ll MOD = (int)1e9 + 7;
 9 const int maxn = (int)1e6 + 10;
10 
11 int n, num;
12 int arr[40];
13 
14 inline void RUN()
15 {
16     int t;
17     scanf("%d", &t);
18     while (t--)
19     {
20         int ans = 0;
21         scanf("%d", &n);
22         memset(arr, 0, sizeof arr);
23         for (int i = 1; i <= n; ++i)
24         {
25             scanf("%d", &num);
26             int cnt = 0;
27             while (num)
28             {
29                 cnt++;
30                 num >>= 1;
31             }
32             arr[cnt]++;
33             ans = max(ans, arr[cnt]);
34         }
35         printf("%d\n", ans);
36     }
37 }
38 
39 int main()
40 {
41 #ifdef LOCAL_JUDGE
42     freopen("Text.txt", "r", stdin);
43 #endif // LOCAL_JUDGE
44 
45     RUN();
46 
47 #ifdef LOCAL_JUDGE
48     fclose(stdin);
49 #endif // LOCAL_JUDGE
50     return 0;
51 }
View Code

 

转载于:https://www.cnblogs.com/Dup4/p/9657033.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值