BZOJ 1045: [HAOI2008] 糖果传递

 

我们令$x_i$表示第$i$个人传递给第$i + 1$个人的糖果数量,那么有:

$$x_n - x_1 = \overline{a} - a_1$$

$$x_1 - x_2 = \overline{a} - a_2$$

$$\cdots$$

$$x_{n - 1} - x_n = \overline{a} - a_n$$

那么求等式两边求前缀和有:

$$x_n - x_i = \sum\limits_{j = 1}^i \overline{a} - a_j$$

移项有:

$$x_i = x_n - (\sum\limits_{j = 1}^i \overline{a} - a_j)$$

我们发现答案等于:

$$ans = \sum\limits_{i = 1}^n |x_i| = \sum\limits_{i = 1}^n (x_n - \sum\limits_{j = 1}^i \overline{a} - a_j)$$

我们令$s_i = \sum\limits_{j = 1}^i \overline{a} - a_j$

我们发现$x_n$的取值最大为所有$a_i$之和

那么易得,$x_n$取值为$s_i$的中位数答案最优

 1 #include <bits/stdc++.h> 
 2 using namespace std;
 3 
 4 #define ll long long
 5 #define N 1000010
 6 int n;
 7 ll a[N];
 8 
 9 void Run()
10 {
11     while (scanf("%d", &n) != EOF)
12     {
13         ll sum = 0;
14         for (int i = 1; i <= n; ++i)
15             scanf("%lld", a + i), sum += a[i];
16         sum /= n;
17         for (int i = 1; i <= n; ++i)
18         {
19             ll t = sum - a[i];
20             a[i] = a[i - 1] + t;
21         }
22         sort(a + 1, a + 1 + n);
23         ll t = a[n / 2];
24         ll ans = 0;
25         for (int i = 1; i <= n; ++i)
26             ans += abs(t - a[i]);
27         printf("%lld\n", ans);
28     }
29 }
30 
31 int main()
32 {
33     #ifdef LOCAL
34         freopen("Test.in", "r", stdin);
35     #endif 
36 
37     Run();
38     return 0;
39 }
View Code

 

转载于:https://www.cnblogs.com/Dup4/p/10573043.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值