目录
Contest Info
Solved | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
8/11 | O | O | O | O | O | O | O | O | - | - | - |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A - ^&^
题意:
要求找一个最小的正整数\(C\)使得\((A \oplus C) \& (B \oplus C)\)这个式子最小。
思路:
注意是\(C\)是正整数。
B - array
题意:
有一个排列\(a_i\),有两种操作:
- 将\(a_x\)变成\(a_x + 10^7\)
- 询问没有在区间\([1, r]\)里面出现过并且\(\geq k\)的最小的数
思路:
- 权值线段树维护\(i\)出现的下标
- 那么只需要找一个最小的\(x\),使得\([k, x]\)这段数出现的下标的最大值\(>r\)即可。
- 权值线段树上二分即可,复杂度有点玄学。。
C - K-th occurrence
题意:
给定一个字符串\(S\),询问一个子串\(S[l, r]\)在原串中第\(k\)次出现的起始位置
思路:
考虑一个起始位置\(i\)出现了\(S[l, r]\),那么有后缀\(S_i\)以及后缀\(S_l\)的\(lcp\)肯定大于等于\(r - l + 1\)。
那么后缀排序之后,这些起始位置在\(Rank[]\)数组中是连续的一段,二分找到左右界,主席树查询区间第\(k\)大即可。
D - path
题意:
E - huntian oy
题意:
计算:
\[ \begin{eqnarray*} f(n,a,b)=\sum\limits_{i=1}^n \sum\limits_{j=1}^i gcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1] \bmod (10^9+7) \end{eqnarray*} \]
思路:
当\(a > b\)且\(gcd(a, b) = 1\)时,有\(gcd(a^n - b^n, a^m - b^m) = a^{gcd(n, m)} - b^{gcd(n, m)}\)。
那么原式为:
\[ \begin{eqnarray*} f(n, a, b) &=& \sum\limits_{i = 1}^n \sum\limits_{j = 1}^i (i - j)[gcd(i, j) = 1] \bmod (10^9 + 7) \\ &=& \sum\limits_{i = 1}^n \sum\limits_{j = 1}^i i[gcd(i, j) = 1] -j[gcd(i, j) = 1] \\ &=& \sum\limits_{i = 1}^n i\varphi(i) - \frac{i\varphi(i) - [n = 1]}{2} \\ &=& \frac{\sum\limits_{i = 1}^n i\varphi(i) - 1}{2} \end{eqnarray*} \]
令\(f(n) = i\varphi(i)\),配一个\(g = id(n)\),有\((f * g)(n) = \sum\limits_{i \;|\; n} i \varphi(i) \frac{n}{i} = i \sum\limits_{d \;|\; i} \varphi(i) = i^2\)
杜教筛即可。
F - Shuffle Card
签到。
G - Windows Of CCPC
签到。