- 博客(576)
- 资源 (1)
- 收藏
- 关注

原创 2021蓝桥杯Java复习【史上最详细攻略】【持续更新】
Java排序交叉排序import java.math.BigInteger;import java.util.Arrays;import java.util.Comparator;import java.util.Scanner;public class Main { public static void main(String[] args) { Scanner cin = new Scanner(System.in); Integer a[]; Integer n = cin
2020-10-04 18:02:08
28948
13
原创 如何使用clip模型进行OOD
使用CLIP模型进行OOD检测(Out-of-Distribution Detection) 的核心思路是:利用CLIP的多模态对齐能力(图像和文本的联合嵌入空间),通过计算输入样本与已知类别语义的匹配度,判断其是否属于已知分布。CLIP的OOD检测原理CLIP(Contrastive Language-Image Pretraining)通过对比学习将图像和文本映射到同一语义空间。在OOD检测中,可以:CLIP的核心思想是将图像和文本映射到同一语义空间,使匹配的图文对在嵌入空间中距离接近,不匹配的远离。
2025-03-01 19:58:25
418
原创 多模态大模型调研BLIP、BLIP2、InstructBLIP
这张表格总结了在不同任务(如图像描述、视觉问答、视觉问题生成)中,如何向大语言模型提供不同形式的指令模板。每个任务的指令稍有不同,以适应任务要求。例如,图像描述任务要求生成简短的描述,视觉问答则要求根据图像回答问题,而视觉问题生成任务则要求模型根据图像和预设答案生成问题。这些指令模板有助于增强模型的多任务处理能力,使其能够更好地理解和执行不同的视觉相关任务。
2024-10-07 18:33:16
1004
原创 多模态大模型调研
NLP与CV的区分是历史阶段性的产物,有了vit/transformer之后,两者的区分不再明显。Glip 应用于目标检测。Clip的泛化能力超强。
2024-10-04 17:25:22
317
原创 SLAM学习-VO视觉里程计
当你开车经过一排房屋时,视觉里程计就像是一个聪明的助手,它会观察连续的图像:在第一帧中,房子在画面的右侧,而当你前进时,房子逐渐移向左侧。综上,视觉里程计通过分析连续图像来追踪相机的运动,就像玩游戏时摄像头根据场景的变化判断汽车的移动轨迹一样。视觉里程计通过连续拍摄的图像序列,提取出特征点(如角点、边缘等),并比较这些特征点在不同帧图像中的相对位置变化,来估算相机的运动轨迹。现在想象你突然转弯,视觉里程计会“看到”场景中的物体以不同角度出现,利用这种视角的变化,它能推测出你不仅前进了,还发生了旋转。
2024-09-23 15:08:29
571
原创 两台服务器之间互传数据
scp 默认使用 SSH 协议的端口(通常是端口 22)。如果你需要指定一个不同的端口号,可以使用 -P 选项(注意是大写的 P)。
2024-09-11 15:16:49
278
原创 如何使用命令行快速下载Google Drive/OneDrive大文件
OneDrive使用wget下载会出现403 forbidden,可通过下面方法下载。浏览器右键进入检查界面,选择netowork,搜索download.aspx,然后在待下载文件处点击下载,即可出现下载链接,复制为cURL即可下载。
2024-09-09 15:47:22
1376
原创 科研习惯 [4] 学会表达
盯着对方的鼻子,而不是眼睛,可以避免get到对面眼神变化而造成的分心。比如,我们约定俗成的讲故事的逻辑,就是时间顺序,4.表达能力不够强的情况下,不要直视对方的眼睛。因为一问一答就无法深入。毫无准备的情况下,如然被cue到,就按。有效表达和胡说八道之间的区别在于是否有。2.让别人理解到你打算从哪方面论证观点。3.不要陷入人称代词把别人搞混的误区。3.具体论证重点:实践,实践,实践。
2024-09-03 14:58:13
245
原创 什么是论点、论据、结论和提议
在构建论证时,通常的顺序是先提出论点,然后提供支持论点的论据,接着得出结论,并可能提出具体的提议或解决方案。这个过程有助于清晰、有逻辑地表达观点,并说服听众或读者接受你的观点。在逻辑和修辞学中,论点、论据、结论和提议是构建有效论证的基本要素。
2024-08-29 18:42:33
1738
原创 科研习惯 [3] 博士需要培养的能力
每个点我分成 高中初 三个级别 即总共90分 为了方便理解 默认本科毕业送基础分10分 凑到100分。我粗算了一下对机器学习(偏理论和方法论 不偏工程)大概30个技能点吧(可能增加)
2024-08-28 15:30:27
431
转载 科研习惯 [2] 演讲的能力
还可以是看到的一部有趣的电影的叙述。很多人会觉得这似乎很简单,但是等到你开始做的时候,你会发现这跟你平时说话不太一样。你可能会发现原先你以为你可以流畅讲完的部分,会出现卡壳,会出现很多“恩,恩,啊,啊”的口头禅,总之,你会发现自己的各种各样的问题。通过这个练习,你会感觉到三分钟,你大概可以讲完多少内容,让你掌握演讲说话的感觉。同时,它也可以训练你的逻辑能力,比如利用三点式来回答问题,第一点,第二点,第三点,这是训练你结构化思维的一个不错的方式。
2024-08-28 15:21:56
105
原创 科研习惯 [1] 什么是学术三问
研究者需要思考为什么选择这个课题,研究的科学意义、社会价值以及其对领域发展的贡献是什么。这一问主要是让研究者明确研究的对象、范围和核心问题。它要求研究者清晰地定义研究的目标和要解决的关键问题,避免研究的方向模糊不清。研究者需要考虑如何设计实验、收集数据、分析结果,并确保研究的科学性、可行性和创新性。“学术三问”是中国学术界的一种反思性提问方式,用于研究者在学术活动中思考其研究的基础性问题。通过“学术三问”,研究者能够更加全面地审视自己的研究项目,确保研究有明确的方向、实际的价值和科学的方法。
2024-08-28 14:37:20
324
原创 AI之路:linux下编辑代码常用指令tmux与vim|shell常用快捷键
在使用过程中,如果要做比较耗时的操作,例如有时候进行编译,或者下载大文件需要比较长的时间,一般情况下是下班之后直接运行希望第二天早上过来运行完成,这样就不用耽误工作时间。tmux刚好可以解决我们描述的问题,当我们在tmux中工作的时候,即使关掉SecureCRT的连接窗口,再次连接,进入tmux的会话我们之前的工作仍然在继续。会话有点像是tmux的服务,在后端运行,我们可以通过tmux命令创建这种服务,并且可以通过tmux命令查看,附加到后端运行的会话中。在命令模式下输入,可使用鼠标控制vi。
2024-04-23 21:57:53
917
转载 论文写作中Introduction与Related work的区别
a) 背景介绍、现状(介绍别人的研究),存在的问题,怎样解决、我的做法、有何亮点b) 研究背景和重要性、引出该领域的科研空白、点题–指出本文的研究课题、概述文章的核心方法论和主要发现、提出猜想和研究目的。
2024-03-27 17:01:56
1073
1
原创 Linux下新建用户
vi中,按i是输入模式,按esc退出编辑模式 输入:wq!在user privilege这一行,仿照root,另起一行,添加上。找到新建用户名,将sh改为bash。
2024-02-03 18:56:35
550
原创 学术科研常用工具
顶会(CVPR,ICCV,ECCV,Neurips,AAAI)顶刊(TPAMI,IJCV,TIP)arxiv学术速递 https://arxivdaily.com/top高校公开课:斯坦福,李宏毅课程,
2023-11-28 19:16:44
267
原创 在深度迁移学习中,什么是源域,什么是目标域?
域迁移的目标是通过迁移源域中学到的知识和特征,在目标域上实现更好的泛化性能。在目标域中,通常有较少的标记样本可供学习,因此模型需要通过迁移学习来利用源域中学到的知识和特征,以便在目标任务上获得良好的性能表现。通过从源域到目标域的知识迁移,模型可以更好地适应目标域的特征和数据分布,从而提高在目标任务上的效果。因此,我们需要通过迁移学习的方式,将从源域学到的知识和特征应用到目标域上,以提高在目标域上的性能表现。总之,源域是用于训练模型的数据集或数据分布,而目标域是我们希望将模型应用于的新数据集或数据分布。
2023-09-30 17:08:28
9150
1
原创 深度迁移学习(Deep Migration Learning)
深度迁移学习(Deep Transfer Learning)是一种在深度学习领域中应用的迁移学习方法,旨在通过利用从一个领域学习到的知识来改善在另一个相关但数据较少的领域上的学习任务。深度迁移学习常常使用预训练的深度神经网络模型,通过迁移已学习到的知识和特征来加快和优化在目标领域上的学习过程。深度迁移学习的优势在于它能够利用源领域丰富的数据和已学习到的知识来改善目标领域上的学习性能。**迁移知识:**在预训练完成后,可以利用已经学习到的模型参数和特征来进行迁移知识。
2023-09-30 16:28:07
1959
原创 PyTorch中加载模型权重 A匹配B|A不匹配B
state_dict是包含参数和持久缓冲区的字典,可以看出 strict默认为True,所以默认状态下是严格要求state_dict中的key与torch.nn.Module.state_dict返回的key完全一致的。如果 strict 为 True,则 state_dict 的键必须与该模块的 state_dict() 函数返回的键完全匹配。1.将权重导入原模型,之后在加载后的原模型基础上进行修改。missing_keys 是包含缺失键的 str 列表。很简单,直接.load_state_dict()
2023-08-05 17:58:49
668
转载 【pytorch】优雅的操作张量维度(rearrange)和便携式矩阵乘法(einsum)
einops是一个简洁优雅操作张量的库,并且支持对numpy,pytorch,tensorflow中的张量进行操作,该库最大的优点是函数的使用逻辑清晰明了,其中中常用的三个函数分别是rearrange,repeat,reduce。:用于对张量的维度进行重新变换排序,可用于替换pytorch中的reshape,view,transpose和permute等操作:用于对张量的某一个维度进行复制,可用于替换pytorch中的repeat。
2023-06-11 16:33:05
1587
原创 365天深度学习打卡 第P9周:YOLOv5的backbone实现
1.2 C3模块Bottleneck模块SPPF模块二、数据集和相关参数设置2.1 数据集操作2.2 相关参数设置2.3 定义Backbone网络三、训练及结果可视化3.1 训练及测试代码3.2 训练循环代码3.3 训练结果可视化
2023-05-26 13:23:08
1003
原创 365天深度学习打卡 第N2周:中文文本分类-Pytorch实现
这里写自定义目录标题目标Before do anything :¶mount google drive by press mount button since my account has advanced protection¶导入数据构造数据集迭代器¶数据预处理¶生成数据批次和迭代器¶定义模型¶定义实例定义训练函数与评估函数¶拆分数据集并运行模型¶使用测试数据集评估模型¶ 🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊|接辅导、项目定制 目标中文文本的处理Befor
2023-05-19 15:12:49
513
转载 为什么当设置parameters.requires_grad=False :误差仍然反向传播,梯度不更新
用法:冻结参数,不参与反向传播,具体实现是将要冻结的参数的requires_grad属性置为false,然后在优化器初始化时将参数组进行筛选,只加入requires_grad为True的参数。首先要明白,误差回传与否,与 requires_grad 的值没有关系,取决于 loss.backward( )。而权重和偏置值的偏导值是多少并不影响误差反向传播,误差反向传播主干部分计算的是每一层激活前神经元的偏导值。我们要知道,param 包括的无非是 权重 和 偏置值。
2023-05-06 20:48:41
1064
原创 365天深度学习打卡 第N3周:调用Gensim库训练Word2Vec模型
自然语言处理,简称 NLP,是人工智能的一个分支,它允许机器理解、处理和操纵人类语言。Gensim是在做自然语言处理时较为经常用到的一个工具库,主要用来以无监督的方式从原始的非结构化文本当中来学习到文本隐藏层的主题向量表达。拿到了分词后的文件,在一般的NLP处理中,会需要去停用词。因此对于word2vec,我们可以不用去停词,仅仅去掉一些标点符号,做一个简单的数据清洗。在实际应用中,可以调参提高词的embedding的效果。库,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。
2023-05-05 13:31:15
701
原创 PyTorch保存中间变量的导数值
为了节省显存,pytorch在反向传播的过程中只保留了计算图中的叶子结点的梯度值,而未保留中间节点的梯度,如下例所示:在利用autograd机制时,一般只会保存函数值对输入的导数值,而中间变量的导数值都没有保留。可以看到当进行反向传播后,只保留了x的梯度tensor(24.),而x1的梯度没有保留所以为None。
2023-05-03 23:25:39
312
转载 使用python打印当前时间
在跑模型的时候,我们有时需要计算模型运行时间,此时我们需要获取到模型开始运行的时间以及模型结束运行的时间,以二者的差值作为模型的总运行时间。在python语言中,我们可以使用以下两种常用的方式获取当前时间。
2023-05-02 03:09:17
8710
转载 如何理解深度学习中的端到端(End-to-end)概念
DeepMind神作Human-level control through deep reinforcement learning,其实也可以归为end-end,深度增强学习开山之作,值得学习:http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html。并且,神经网络可以很好地学习到特征的描述,之前需要人工设计的特征算子,本身也可以通过神经网络的方式,让模型自己习得,从而可以用于其他的任务以及更深的研究。
2023-05-01 03:11:15
1339
转载 深度学习中有关网络中的参数量(param)计算,附录有浮点计算量(FLOPs)的链接
1.网络中的参数量(param)对应与空间Space概念,及空间复杂度。2.浮点计算量(FLOPs)对应与时间Time概念,对应于时间复杂度。
2023-04-30 03:45:03
780
原创 计算机领域的pipeline是什么意思
管道(Pipeline)是一种常见的处理问题的方法。它是指将多个任务按顺序连接起来,使得前一个任务的输出作为下一个任务的输入,从而形成一个处理流程。
2023-04-30 03:25:06
536
转载 卷积与池化过程维度尺寸变化与一些名词整理
卷积池化之后,要得到最终预测结果,中间还需要进行全连接层。全连接层无法连接“带形状”的输入,所以我们还是需要将其打平(转化成一个一维的向量),将其变成“一列神经元”去处理。
2023-04-30 02:49:33
500
转载 Inception模块 GooLeNet网络
这篇文章打算简单总结一下网络,其网络结构如下图所示。我放上面这张图只是为了方便我们大致了解一下它的结构。我知道这样肯定不太能看清每一层具体细节,因为可以发现,GoogLeNet看起来有非常多且复杂的结构,要是清晰地放在这篇文章里恐怕会占很多篇幅,所以具体、清晰的GoogleNet图可以看。与、AlexNet等卷积神经网络相比,GoogLeNet绝对是我们见过的层数最多的网络了,它的网络层数有超过100层。
2023-04-30 02:46:56
365
转载 torch.nn.Embedding(num_embeddings, embedding_dim)的理解
embed输出的维度是[2, 3, 4],这就代表对于输入的[2,3]维的词,每一个词都被映射成了一个4维的向量。
2023-04-29 00:41:31
259
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人