Poj1159 Palindrome 【简单DP】(LCS)

http://poj.org/problem?id=1159

题目大意:给定一个字符串,问最少插入多少字符,使该字符串变成回文字符串。

设原字符串序列为X,逆序列为Y,则最少需要补充的字母数=X的长度-XY的最长公共子串的长度。

状态转移方程:f[i][j]=max{ f[i-1][j] , f[i][j-1] , f[i-1][j-1]+1(if s1[i]==s2[j])}

 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <queue>
using namespace std;
template <class T> void checkmin(T &t,T x) {if(x < t) t = x;}
template <class T> void checkmax(T &t,T x) {if(x > t) t = x;}
template <class T> void _checkmin(T &t,T x) {if(t==-1) t = x; if(x < t) t = x;}
template <class T> void _checkmax(T &t,T x) {if(t==-1) t = x; if(x > t) t = x;}
typedef pair <int,int> PII;
typedef pair <double,double> PDD;
typedef long long ll;
#define foreach(it,v) for(__typeof((v).begin()) it = (v).begin(); it != (v).end ; it ++)
const int N = 5050;
int f[2][N];
int LCS(string s1 , string s2 ,int n) {
    memset(f , 0 , sizeof(f));
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++) {
        f[i%2][j] = max(f[(i-1)%2][j],f[i%2][j-1]);
        if(s1[i-1] == s2[j-1])
            checkmax(f[i%2][j] , f[(i-1)%2][j-1]+1);
    }
    return f[n%2][n];
}
int main() {
    string s1 , s2;
    int n;
    while(cin >> n) {
        cin >> s1;
        s2 = s1;
        reverse(s1.begin() , s1.end());
        cout << n - LCS(s1,s2,n) << endl;
    }
    return 0;
}

 

 

转载于:https://www.cnblogs.com/aiiYuu/archive/2013/04/04/2999421.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值