华为OD面试真题题库
专栏:华为OD面试真题题库
目录: 最新华为OD面试手撕代码真题目录以及八股文真题目录
1. 数据预处理流程
数据预处理的主要步骤
-
数据清洗:
- 处理缺失值:识别数据中的缺失值,并决定如何处理它们(例如,填充缺失值、删除含缺失值的行或列等)。
- 去除重复记录:检查并删除数据中的重复行,以防止数据偏差和重复计算。
-
数据转换:
- 类型转换:确保每列数据的类型(如整数、浮点数、字符串等)正确地匹配其内容,以方便后续处理。
- 标准化/归一化:对数值数据进行标准化或归一化处理,使其位于同一量级,便于模型处理(如Z-score标准化、Min-Max归一化等)。
-
数据编码:
- 类别数据编码:将非数值类型数据转换为数值型,例如使用独热编码(One-Hot Encoding)、标签编码(Label Encoding)等方法处理分类数据。
-
特征工程:
- 特征选择:选择对模型预测最有帮助的特征,以减少维度并提高模型的效率和效果。
- 特征构造:基于现有数据构造新的特征,以增强模型的预测能力。
-
异常值处理:
- 检测和处理异常值:识别可能的异常值并决定如何处理它们,可以使用统计测试、箱型图等方法。
-
数据划分:
- 训练集和测试集分割:将数据划分为训练集和测试集,以确保模型能在未见过的数据上进行有效的测试。
工具和库
在Python中,有许多库可以帮助进行数据预处理,如:
- Pandas:提供了强大的数据结构和数据分析工具,非常适合数据清洗和探索。
- NumPy:用于处理大型多维数组和矩阵的科学计算。
- Scikit-learn:包含了许多用于数据预处理的工具,如标凈化、编码、特征选择等。
- Matplotlib 和 Seaborn:用于数据可视化,帮助理解数据分布和特征关系。
2.介绍线性回归、逻辑回归模型
线性回归(Linear Regression)
线性回归是一种用于预测连续数值目标变量(因变量)的回归分析方法,其中的预测是基于一个或多个独立变量(自变量)。它假设因变量和自变量之间存在线性关系。
模型形式:
线性回归模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y