【华为OD技术面试真题 - 技术面】- python面试题(1)

这篇博客整理了华为OD面试中关于Python的数据预处理流程,包括数据清洗、线性回归和逻辑回归模型、浅拷贝与深拷贝的区别、lambda函数和装饰器的使用,以及Python执行过程中的is和==区别和GIL对多线程的影响。内容涵盖数据处理常用工具库、模型评估方法和Python内存管理的关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

华为OD面试真题题库

专栏:华为OD面试真题题库
目录: 最新华为OD面试手撕代码真题目录以及八股文真题目录

封面

1. 数据预处理流程

数据预处理的主要步骤

  1. 数据清洗

    • 处理缺失值:识别数据中的缺失值,并决定如何处理它们(例如,填充缺失值、删除含缺失值的行或列等)。
    • 去除重复记录:检查并删除数据中的重复行,以防止数据偏差和重复计算。
  2. 数据转换

    • 类型转换:确保每列数据的类型(如整数、浮点数、字符串等)正确地匹配其内容,以方便后续处理。
    • 标准化/归一化:对数值数据进行标准化或归一化处理,使其位于同一量级,便于模型处理(如Z-score标准化、Min-Max归一化等)。
  3. 数据编码

    • 类别数据编码:将非数值类型数据转换为数值型,例如使用独热编码(One-Hot Encoding)、标签编码(Label Encoding)等方法处理分类数据。
  4. 特征工程

    • 特征选择:选择对模型预测最有帮助的特征,以减少维度并提高模型的效率和效果。
    • 特征构造:基于现有数据构造新的特征,以增强模型的预测能力。
  5. 异常值处理

    • 检测和处理异常值:识别可能的异常值并决定如何处理它们,可以使用统计测试、箱型图等方法。
  6. 数据划分

    • 训练集和测试集分割:将数据划分为训练集和测试集,以确保模型能在未见过的数据上进行有效的测试。

工具和库

在Python中,有许多库可以帮助进行数据预处理,如:

  • Pandas:提供了强大的数据结构和数据分析工具,非常适合数据清洗和探索。
  • NumPy:用于处理大型多维数组和矩阵的科学计算。
  • Scikit-learn:包含了许多用于数据预处理的工具,如标凈化、编码、特征选择等。
  • MatplotlibSeaborn:用于数据可视化,帮助理解数据分布和特征关系。

2.介绍线性回归、逻辑回归模型

线性回归(Linear Regression)

线性回归是一种用于预测连续数值目标变量(因变量)的回归分析方法,其中的预测是基于一个或多个独立变量(自变量)。它假设因变量和自变量之间存在线性关系。

模型形式:

线性回归模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值