python常用函数
记录平时学习机器学习所见到的一些函数,主要用于记录当时我所需要用到的功能的解释,所以对于一些函数的解释会不是很全面,希望有缘看到我的博客的亲们见谅哦
永远做自己
这个作者很懒,什么都没留下…
展开
-
matplotlib:subplot绘制多个子图
转载自:https://blog.csdn.net/gatieme/article/details/61416645matplotlib下, 一个 Figure 对象可以包含多个子图(Axes), 可以使用 subplot() 快速绘制, 其调用形式如下 :subplot(numRows, numCols, plotNum)图表的整个绘图区域被分成 numRows 行和 numCols 列然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1plotNum 参转载 2021-02-20 08:39:45 · 2613 阅读 · 0 评论 -
plt.xticks()
plt.xticks([0,1],[1,2],rotation=0)[0,1]代表x坐标轴的0和1位置,[2,3]代表0,1位置的显示lable,rotation代表lable显示的旋转角度。官方给出的例子是:xticks( arange(5), (‘Tom’, ‘Dick’, ‘Harry’, ‘Sally’, ‘Sue’) )用’Tom’, ‘Dick’, ‘Harry’, ‘Sally’, 'Sue’作为[0,1,2,3,4]位置显示的label。转载自:https://blog.csdn.转载 2021-02-20 08:20:02 · 4722 阅读 · 0 评论 -
plt.tight_layout() 自动调整子图参数
https://blog.csdn.net/du_shuang/article/details/84139716转载 2021-02-19 22:35:19 · 1439 阅读 · 0 评论 -
pd.read_csv()参数解析
pd.read_csv(filepath_or_buffer, sep=’, ‘, delimiter=None, header=’infer’, names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipiniti.原创 2021-02-19 22:34:29 · 868 阅读 · 0 评论 -
pandas read_csv(header、names、skiprows、nrows、chunksize)
导入包import pandas as pd创建.csv文件id,shuju,label1,3,one2,7,two5,7,three6,8,four3,5,fiveheader属性#不加上header后第一行会成为表头a = pd.read_csv("../data/head.csv")print(a)#加上header后第一行就不会成为表头了a = pd.read_csv("../data/head.csv",header=None)print(a)names原创 2021-02-05 20:52:19 · 3471 阅读 · 0 评论 -
plt.scatter各参数详解
https://blog.csdn.net/qiu931110/article/details/68130199转载 2021-01-25 17:03:28 · 300 阅读 · 0 评论 -
python中train_test_split()
train_test_split()函数是用来随机划分样本数据为训练集和测试集的,当然也可以人为的切片划分。优点:随机客观的划分数据,减少人为因素完整模板:train_X,test_X,train_y,test_y = train_test_split(train_data,train_target,test_size=0.3,random_state=5)参数解释:train_data:待划分样本数据train_target:待划分样本数据的结果(标签)test_size:测试数据占样本数据转载 2021-01-22 16:38:09 · 7180 阅读 · 1 评论 -
pandas的fillna()方法-填充空值
pandas中fillna()方法,能够使用指定的方法填充NA/NaN值。https://blog.csdn.net/qq_17753903/article/details/89892631转载 2021-01-22 16:33:42 · 1995 阅读 · 0 评论 -
sklearn中随机分割训练集和测试集
from sklearn.model_selection import train_test_splitX_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.3,random_state=0)这里的random_state就是为了保证程序每次运行都分割一样的训练集和测试集。否则,同样的算法模型在不同的训练集和测试集上的效果不一样。...原创 2021-01-21 15:43:21 · 409 阅读 · 0 评论 -
numpy函数:np.reshape()
https://blog.csdn.net/qq_28618765/article/details/78083895并且当设置为np.reshape((-1,1))时,就表示将原本来的数据转换为行数由列数确定,列数为1的矩阵原创 2021-01-18 19:38:10 · 612 阅读 · 0 评论 -
python绘图
import matplotlib.pyplot as pltplt.rcParams["font.sans-serif"]=["SimHei"] # 图标中支持中文plt.rcParams["axes.unicode_minus"]=False # 图表中支持负号plt.title("随机梯度下降")plt.xlabel("数量")plt.ylabel("损失值")plt.plot(range(len(test_y)),pred_y,"g-",alpha=0.5) # 设置左上方的图标plt原创 2021-01-18 17:28:32 · 74 阅读 · 0 评论 -
numpy中的ravel()、flatten()、squeeze()的用法与区别
https://blog.csdn.net/tymatlab/article/details/79009618转载 2021-01-18 17:26:24 · 175 阅读 · 0 评论 -
np.ones(len(X), 1) 与np.hstack((X, index))与X.shape(0)与X.shape(1)
np.ones(len(X), 1)创建一个行数为len(X)列数为1的矩阵np.hstack((X, index))将矩阵X与index横向拼接原创 2021-01-17 18:51:51 · 1200 阅读 · 0 评论 -
A.mean(0) 与A.mean(1) 与np.mean(A)
1、A.mean(0)计算每一列的平均值A = np.array([[1, 2, 3], [3, 3, 6], [4, 6, 8], [4, 7, 7]])mu1 = A.mean(0)print(mu1)输出是2、A.mean(1)计算每一行的平均值A = np.array([[1, 2, 3], [3, 3, 6], [4, 6, 8], [4, 7, 7]])mu1 = A.mean(1)print(mu1)输出是3、np.mean(A)计算整体的平均值A = np原创 2021-01-17 18:18:12 · 4855 阅读 · 0 评论