草地排水 Drainage Ditches

网络流Dinic算法模板题

题目描述

    在农夫约翰的农场上,每逢下雨,贝茜最喜欢的三叶草地就积聚了一潭水。这意味着草地被水淹没了,并且小草要继续生长还要花相当长一段时间。因此,农夫约翰修建了一套排水系统来使贝茜的草地免除被大水淹没的烦恼(不用担心,雨水会流向附近的一条小溪)。作为一名一流的技师,农夫约翰已经在每条排水沟的一端安上了控制器,这样他可以控制流入排水沟的水流量。 

    农夫约翰知道每一条排水沟每分钟可以流过的水量,和排水系统的准确布局(起点为水潭而终点为小溪的一张网)。需要注意的是,有些时候从一处到另一处不只有一条排水沟。

    根据这些信息,计算从水潭排水到小溪的最大流量。对于给出的每条排水沟,雨水只能沿着一个方向流动,注意可能会出现雨水环形流动的情形。。

输入

1:两个用空格分开的整数N (0 <= N <= 200) 和 M (2 <= M <= 200)N是农夫约翰已经挖好的排水沟的数量,M是排水沟交叉点的数量。交点1是水潭,交点M是小溪。
第二行到第N+1:每行有三个整数,Si, Ei, 和 CiSi 和 Ei (1 <= Si, Ei <= M) 指明排水沟两端的交点,雨水从Si 流向EiCi (0 <= Ci <= 10,000,000)是这条排水沟的最大容量。

输出

    输出一个整数,即排水的最大流量。

样例输入

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

样例输出

50
题解:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <vector>
#define INF 0x7fffffff
#define Max_N 205
using namespace std;
struct edge
{
    int to,cap,rev;
 };
int m,t;//m为边的个数,t为汇点
int level[Max_N],iter[Max_N];//level数组是标记顶点到起点的距离,iter为弧标号
vector <edge> G[Max_N];//装边的容器
void AddEdge(int from,int to,int v)//添加一条边
{
    G[from].push_back((edge){to,v,G[to].size()});
    G[to].push_back((edge){from,0,G[from].size()-1});
}
void bfs()//用广度搜索给点标记上到源点的距离
{
    memset(level,-1,sizeof(level));
    level[1]=0;//源点标记为0
    queue <int> q;
    q.push(1);
    while(!q.empty())
    {
        int v=q.front();
        q.pop();//取出第一个元素
        for(int i=0;i<G[v].size();i++)
        {
            edge &e=G[v][i];
            if(e.cap>0&&level[e.to]<0)//容量大于0(还可以流)且未被标记过
            {
                level[e.to]=level[v]+1;
                q.push(e.to);
            }    
        }
    }
 } 
 int dfs(int f,int c)//基本与Ford Fulkson算法的dfs部分相同
 {
     if(f==t)//到达汇点
         return c;
     for(int &i=iter[f];i<G[f].size();i++)
     {
         edge &e=G[f][i];
         if(e.cap>0&&level[f]<level[e.to])
         {
             int d=dfs(e.to,min(c,e.cap));
             if(d>0)
             {
                 e.cap-=d;
                 G[e.to][e.rev].cap+=d;
                 return d;
             }
         }    
     }
     return 0;
  } 
  int max_flow()
  {
      int ans=0;
      while(1)
      {
          bfs();//给点标号
          if(level[t]<0)//没有增广路
              return ans;
          memset(iter,0,sizeof(iter));
          int f;
          while((f=dfs(1,INF))>0)
              ans+=f;
      }
  }
  int main(void)
  {
          scanf("%d%d",&m,&t);
          for(int i=1;i<=m;i++)
          {
              int a,b,c;
              scanf("%d%d%d",&a,&b,&c);
              AddEdge(a,b,c);
          }
          printf("%d",max_flow());
  }

思路是首先给各个点标记上到源点的距离,初次判定是否有增广路。

然后循环用深度优先搜索计算出最大的流。

著作权归博主所有,博客地址:http://www.cnblogs.com/Oswald/

 

转载于:https://www.cnblogs.com/Oswald/p/8849660.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值