A - TT 的神秘任务1(必做):
题意:
这一天,TT 遇到了一个神秘人。
神秘人给了两个数字,分别表示 n 和 k,并要求 TT 给出 k 个奇偶性相同的正整数,使得其和等于 n。
例如 n = 10,k = 3,答案可以为 [4 2 4]。
TT 觉得这个任务太简单了,不愿意做,你能帮他完成吗?
input:
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(1 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 100)。
output:
如果存在这样 k 个数字,则第一行输出 “YES”,第二行输出 k 个数字。
如果不存在,则输出 “NO”。
样例:
input:
8
10 3
100 4
8 7
97 2
8 8
3 10
5 3
1000000000 9
output:
YES
4 2 4
YES
55 5 5 35
NO
NO
YES
1 1 1 1 1 1 1 1
NO
YES
3 1 1
YES
111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111110 111111120
思路:
因为没有要求输出得奇偶数得大小,故直接从小得开始算。为了避免讨论,直接对全是奇数和全是偶数进行一边。对于一个数n,全部分为奇数,即可以有k-1个1,再求n-(k-1)是不是大于0得奇数。如果是,则输出。全部分为偶数时,即先分出来k-1个2,然后再求n-2*(k-1)是不是大于0的偶数。如果是则输出。如果两个都不符合,则输出NO。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
int T;
int n,k;
int main(){
ios::sync_with_stdio(0);
cin>>T;
for(int i=0; i<T;i++){
cin>>n>>k;
int tmp=n-(k-1);
if(tmp%2==1 && tmp>0){
cout<<"YES"<<endl;
for(int j=0; j<k-1;j++){
cout<<1<<" ";
}
cout<<n-(k-1)<<endl;
continue;
}
tmp=n-2*(k-1);
if(tmp%2==0 && tmp>0){
cout<<"YES"<<endl;
for(int j=0; j<k-1;j++){
cout<<2<<" ";
}
cout<<n-2*(k-1)<<endl;
continue;
}
cout<<"NO"<<endl;
}
return 0;
}
B - TT 的神秘任务2(必做)
题意:
在你们的帮助下,TT 轻松地完成了上一个神秘任务。
但是令人没有想到的是,几天后,TT 再次遇到了那个神秘人。
而这一次,神秘人决定加大难度,并许诺 TT,如果能够完成便给他一个奖励。
任务依旧只给了两个数字,分别表示 n 和 k,不过这一次是要求 TT 给出无法被 n 整除的第 k 大的正整数。
例如 n = 3,k = 7,则前 7 个无法被 n 整除的正整数为 [1 2 4 5 7 8 10],答案为 10。
好奇的 TT 想要知道奖励究竟是什么,你能帮帮他吗?
input:
第一行一个整数 T,表示数据组数,不超过 1000。
之后 T 行,每一行给出两个正整数,分别表示 n(2 ≤ n ≤ 1e9)、k(1 ≤ k ≤ 1e9)。
output:
对于每一组数据,输出无法被 n 整除的第 k 大的正整数。
样例:
Input
6
3 7
4 12
2 1000000000
7 97
1000000000 1000000000
2 1
output:
10
15
1999999999
113
1000000001
1
思路:
求一个不能被n整除的第k个数。易知,能被n整除的都是n的整数倍数。并且由数据的大小1e9,不能暴力直接求解。并且我们很容易能求解得到一个数是不能被n整除的排名。故我们可以通过二分的方法来求解一个数,然后得到一个数的时候,再求这个数是不能被n整除的第几个数。等到这个数等于k的时候,同时注意在这里,要判断这个名次的数是不是能被整除,处理一下,就可以输出了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
int T;
long long n,k;
long long tot;
int main(){
ios::sync_with_stdio(0);
cin>>T;
for(int i=0; i<T;i++){
cin>>n>>k;
long long r=1e11;
long long l=0;
long long mid=0;
while(l<=r){
mid=(l+r)/2;
tot=mid-(mid/n);
if(tot>k){
r=mid-1;
}else if(tot<k){
l=mid+1;
}else if(tot==k){
if(mid%n==0){
cout<<mid-1<<endl;
}else{
cout<<mid<<endl;
}
break;
}
}
}
return 0;
}
C - TT 的奖励
input:
多组样例。每组样例输入一个 m (0 < m < 100000),表示有 m 只猫咪。
在接下来的 m 行中,每行有两个整数 a b (0 < b < 100000),表示在第 b 秒的时候有一只猫咪掉落在 a 点上。
注意,同一个点上同一秒可能掉落多只猫咪。m = 0 时输入结束。
output:
输出一个整数 x,表示 TT 可能接住的最多的猫咪数。
样例:
6
5 1
4 1
6 1
7 2
7 2
8 3
0
4
思路:
与上两题不太一样,上两个题一看到,大致会有一个模糊的思路,然后去完善和优化这个思路就可以。这道题一看到是没有思路的,觉得普通的做法不能完成的。再按照这段时间学的动态规划,觉得这道题目应该就要用动态规划了。首先读取数据的时候,用f[i][j]来接受第i秒的j处的猫,f[i][j]表示在i秒的时候在j点的猫的数量。然后在转移方程中的f[i][j]+=max{f[i+1][j-1],f[i+1][j],f[i+1][j+1]},即从上一次的最大数量的猫的点更新过来。因为j一次只可以移动一步。至于f[i][j]更新的时候,为什么不是从f[i-1][j]更新来。因为根据更新原理,数据大小是从小更新到大的。我们只知道起点是f[0][5],而不知道最终的终点在哪。故需要遍历所有的点。如果倒过来进行遍历的话,起点变成终点,我们就可以直接输出终点的值,即f[0][5]的点。因为在这里有j-1。故当j=0的时候,会有-1的非法下标,故整体右移。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
int m;
int f[100050][15]; //在第i秒有一个在j上
int tm;
int main(){
ios::sync_with_stdio(0);
cin>>m;
int a,b;
while(m!=0){
memset(f,0,sizeof(f));
tm=0;
for(int i=0; i<m;i++){
cin>>a>>b;
a++;
f[b][a]++;
tm=max(tm,b);
}
for(int i=tm-1; i>=0;i--){
for(int j=1;j<=11;j++){
f[i][j]+=max(f[i+1][j-1],max(f[i+1][j],f[i+1][j+1]));
}
}
cout<<f[0][6]<<endl;
cin>>m;
}
return 0;
}