C++ 求多边形面积,(通过计算三角形)

题目:输入一个点列,顺次连接成一个封闭多边形,计算多边形的面积

分析:方法一,计算面积可以考虑定积分的形式,定积分有正有负,顺次求和,重复部分相互抵消,最后剩下的总面积的绝对值就是多边形的面积。

从线性积分后的结果可以容易的看出,直线段的积分实际上就是求该直线段与x轴所围成的区域的梯形的面积Int(P1, P2) = Int(k*x + b, P1.x, P2.x) = 0.5 * (P2.x - P1.x) * (P2.y + P1.y), 斜率k = (P1.y - P2.y) / (P1.x - P2.x),截距b = P1.y - k*P1.x;

算法的复杂度为:O(N),N为顶点的个数。

struct Point
{   
    <span style="white-space:pre">	</span>float x, y;   
    };   
    float LinearIntegration(const Point &p1, const Point &p2) 
<span style="font-family: 宋体; text-indent: 2em;">{   </span>
    return 0.5 * (p2.x - p1.x) * (p2.y + p1.y);   
    }   
    float ComputePolygonArea(const Point points[], int length) 
{   
    <span style="white-space:pre">	</span>if (points == NULL || length <= 0) return 0.0;   
    <span style="white-space:pre">	</span>float area = 0.0;   
    <span style="white-space:pre">	</span>for (int i = 0; i < length - 1; ++ i) 
    {   
            area += LinearIntegration(points[i], points[i + 1]);   
   <span style="white-space:pre">	</span>}   
     area += LinearIntegration(points[length - 1], points[0]);   
     return area >= 0.0 ? area : -area;   
    }   



方法二,考虑到平面上知道三角形三个顶点的坐标可以运用行列式det直接求解三角形的面积。如P1(x1,y1),P2(x2,y2),P3(x3,y3),则

S(P1, P2, P3) = det[ x1 y1 1; x2 y2 1; x3 y3 1] * 0.5 = [(x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1)] * 0.5;

可以在多边形的平面中任意的找到一个点,与多边形的每条边形成有向三角形,并顺次求取有向三角形的面积,再加和,因为是有向面积同上述定积分类似,面积有正有负可抵消重复部分,剩下的面积的绝对值即为多边形的面积。

struct Point 
{   
    <span style="white-space:pre">	</span>float x, y;   
    <span style="white-space:pre">	</span>Point() {x = 0.0; y = 0.0;}   
     <span style="white-space:pre">	</span>Point(float _x, float _y) {x = _x; y = _y;}   
    };   
    float ComputeTriangleArea(const Point &p1, const Point &p2, const Point &p3) 
{   
    <span style="white-space:pre">	</span>return 0.5 * ((p2.x - p1.x) * (p3.y - p1.y) - (p3.x - p1.x) * (p2.y - p1.y));   
    }   
    float ComputePolygonAreaTri(const Point points[], int length) 
{   
   <span style="white-space:pre">	</span> if (points == NULL || length <= 0) return 0.0;   
   <span style="white-space:pre">	</span> Point p0(0.0, 0.0);   
   <span style="white-space:pre">	</span> float area = 0.0;   
   <span style="white-space:pre">	</span> for (int i = 0; i < length - 1; ++ i) 
     {   
       <span style="white-space:pre">	</span>     area += ComputeTriangleArea(p0, points[i], points[i + 1]);   
   <span style="white-space:pre">	</span> }   
     area += ComputeTriangleArea(p0, points[length - 1], points[0]);   
     return area >= 0.0 ? area : -area;   
    }   
</pre><p></p><p>   搬运工007</p><pre name="code" class="cpp">
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值