P1880 [NOI1995]石子合并

P1880 [NOI1995]石子合并

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分。

输入格式

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数。

输出格式

输出共2行,第1行为最小得分,第2行为最大得分。

输入输出样例

输入 #1
4
4 5 9 4

输出 #1
43
54

这道题主要用的是转移方程来求取最大值和最小值,唯一的坑点就是它是一个环!!!坑啊!!!;

#include<bits/stdc++.h>   //可爱的万能头
using namespace std;   
int n,minl,maxl;
int f1[300][300],f2[300][300];//一个负责max,一个负责min
int num[300],sum[300];  
inline int d(int i,int j)//转移方程
{
  return sum[j]-sum[i-1];
}  
int main()  
{   
    cin>>n;
	for(int i=1;i<=n;i++)  
	   cin>>num[i];  //单独输入
    for(int i=1;i<=n+n;i++) //因为是一个环,所以需要开到两倍再枚举分界线,最后肯定是最大的 
    {  
        num[i+n]=num[i];  
        sum[i]=sum[i-1]+num[i];  
    }  
    for(int p=1;p<n;p++)  
    {  
        for(int i=1,j=i+p;(j<n+n)&&(i<n+n);i++,j=i+p)  
        {  
            f2[i][j]=0x7f7f7f; //取最大值
            for(int k=i;k<j;k++)  
            {  
                f1[i][j] = max(f1[i][j],f1[i][k]+f1[k+1][j]+d(i,j));  //进行推
                f2[i][j] = min(f2[i][j],f2[i][k]+f2[k+1][j]+d(i,j));  
            }  
        }  
    }  
    minl=0x7f7f7f;  
    for(int i=1;i<=n;i++)  
    {  
        maxl=max(maxl,f1[i][i+n-1]);  
        minl=min(minl,f2[i][i+n-1]);  
    }  
    cout<<minl<<endl<<maxl;  //完美的输出
    return 0;  
}

大家都懂

#include<bits/stdc++.h>   
using namespace std;   
int n,minl,maxl;
int f1[300][300],f2[300][300];
int num[300],sum[300];  
inline int d(int i,int j)
{
  return sum[j]-sum[i-1];
}  
int main()  
{   
    cin>>n;
	for(int i=1;i<=n;i++)  
	   cin>>num[i];  
    for(int i=1;i<=n+n;i++)  
    {  
        num[i+n]=num[i];  
        sum[i]=sum[i-1]+num[i];  
    }  
    for(int p=1;p<n;p++)  
    {  
        for(int i=1,j=i+p;(j<n+n)&&(i<n+n);i++,j=i+p)  
        {  
            f2[i][j]=0x7f7f7f;  
            for(int k=i;k<j;k++)  
            {  
                f1[i][j] = max(f1[i][j],f1[i][k]+f1[k+1][j]+d(i,j));   
                f2[i][j] = min(f2[i][j],f2[i][k]+f2[k+1][j]+d(i,j));  
            }  
        }  
    }  
    minl=0x7f7f7f;  
    for(int i=1;i<=n;i++)  
    {  
        maxl=max(maxl,f1[i][i+n-1]);  
        minl=min(minl,f2[i][i+n-1]);  
    }  
    cout<<minl<<endl<<maxl;  
    return 0;  
}

求点赞!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值