Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int M = 1001;
structxy
{
double l;
double r;
}p[M];
double min(double a,double b)
{
return a < b ? a :b;
}
int d,n;
bool cmp(structxy a,structxy b )
{
return a.l < b.l;
}
int main()
{
double a,b;
int icase = 0;
while(cin >> n >> d && n && d)
{
memset(p,0,sizeof(0));
icase++;
int sum = 1;
bool flag = true;
for(int i = 1; i <= n;i++)
{
cin >>a>>b;
if(b > d)
{
flag = true;
}
else
{
p[i].l = a - sqrt(d*d - b*b);
p[i].r = a + sqrt(d*d - b*b);
}
}
if(!flag)
{
cout<<"Case "<<icase<<": -1"<<endl;
continue;
}
else
{
sort(p+1,p+n+1,cmp);
double s = p[1].r;
for(int i = 2; i <= n; i++)
{
if(p[i].l > s)
{
sum++;
s = p[i].r;
}
else
{
s = min(s,p[i].r);
}
}
}
cout<<"Case "<<icase<<": "<<sum<<endl;
cout<<endl;
}
return 0;
}