002:Radar Installation
总时间限制: 1000ms 内存限制: 65536kB
描述
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Figure A Sample Input of Radar Installations
输入
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
输出
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. “-1” installation means no solution for that case.
样例输入
3 2
1 2
-3 1
2 1
1 2
0 2
0 0
样例输出
Case 1: 2
Case 2: 1
解题思路:
该题求能覆盖到岛屿的最少雷达数;
贪心算法:
1.放置能覆盖到最多岛屿的雷达,使得放置的雷达数最少;
2.计算各个岛屿可放置的雷达区域,将雷达放置重叠处即可以减少数量;
解题要点:
1.创建数组island,保存每个岛屿可被覆盖的雷达范围,
2.创建结构Island,包含x轴上能覆盖该岛屿的范围(start,end),
2.按每个island的起点排序
3.设定一个变量e,保存当前最小的end,当e<start时,放置一个雷达,e=当前end
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
struct Island{
double start