归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
- //将有序数组a[]和b[]合并到c[]中
- void MemeryArray(int a[], int n, int b[], int m, int c[])
- {
- int i, j, k;
- i = j = k = 0;
- while (i < n && j < m)
- {
- if (a[i] < b[j])
- c[k++] = a[i++];
- else
- c[k++] = b[j++];
- }
- while (i < n)
- c[k++] = a[i++];
- while (j < m)
- c[k++] = b[j++];
- }
可以看出合并有序数列的效率是比较高的,可以达到O(n)。
解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?
可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。
- //将有二个有序数列a[first...mid]和a[mid...last]合并。
- void mergearray(int a[], int first, int mid, int last, int temp[])
- {
- int i = first, j = mid + 1;
- int m = mid, n = last;
- int k = 0;
- while (i <= m && j <= n)
- {
- if (a[i] <= a[j])
- temp[k++] = a[i++];
- else
- temp[k++] = a[j++];
- }
- while (i <= m)
- temp[k++] = a[i++];
- while (j <= n)
- temp[k++] = a[j++];
- for (i = 0; i < k; i++)
- a[first + i] = temp[i];
- }
-
- //递归返回,当first和last为同一个数的时候,返回
- 再然后,是一个数和一个数归并 , temp数组只是两个序列合并的时候有用
- void mergesort(int a[], int first, int last, int temp[])
- {
- if (first < last)
- {
- int mid = (first + last) / 2;
- mergesort(a, first, mid, temp); //左边有序
- mergesort(a, mid + 1, last, temp); //右边有序
- mergearray(a, first, mid, last, temp); //再将二个有序数列合并
- }
- }
- bool MergeSort(int a[], int n)
- {
- int *p = new int[n];
- if (p == NULL)
- return false;
- mergesort(a, 0, n - 1, p);
- delete[] p;
- return true;
- }
归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。
在本人电脑上对冒泡排序,直接插入排序,归并排序及直接使用系统的qsort()进行比较(均在Release版本下)
对20000个随机数据进行测试:
对50000个随机数据进行测试:
再对200000个随机数据进行测试:
注:有的书上是在mergearray()合并有序数列时分配临时数组,但是过多的new操作会非常费时。因此作了下小小的变化。只在MergeSort()中new一个临时数组。后面的操作都共用这一个临时数组。
一. 算法描述
自底向上的归并排序:归并排序主要是完成将若干个有序子序列合并成一个完整的有序子序列;自底向上的排序是归并排序的一种实现方式,将一个无序的N长数组切个成N个有序子序列,然后再两两合并,然后再将合并后的N/2(或者N/2 + 1)个子序列继续进行两两合并,以此类推得到一个完整的有序数组。下图详细的分解了自底向上的合并算法的实现过程:
二. 算法分析
平均时间复杂度:O(nlog2n)
空间复杂度:O(n) (用于存储有序子序列合并后有序序列)
稳定性:稳定
三. 算法实现
- /********************************************************
- *函数名称:Merge
- *参数说明:pDataArray 无序数组;
- * int *pTempArray 临时存储合并后的序列
- * bIndex 需要合并的序列1的起始位置
- * mIndex 需要合并的序列1的结束位置
- 并且作为序列2的起始位置
- * eIndex 需要合并的序列2的结束位置
- *说明: 将数组中连续的两个子序列合并为一个有序序列
- *********************************************************/
- void Merge(int* pDataArray, int *pTempArray, int bIndex, int mIndex, int eIndex)
- {
- int mLength = eIndex - bIndex; //合并后的序列长度
- int i = 0; //记录合并后序列插入数据的偏移
- int j = bIndex; //记录子序列1插入数据的偏移
- int k = mIndex; //记录子序列2掺入数据的偏移
- while (j < mIndex && k < eIndex)
- {
- if (pDataArray[j] <= pDataArray[k])
- {
- pTempArray[i++] = pDataArray[j];
- j++;
- }
- else
- {
- pTempArray[i++] = pDataArray[k];
- k++;
- }
- }
- if (j == mIndex) //说明序列1已经插入完毕
- while (k < eIndex)
- pTempArray[i++] = pDataArray[k++];
- else //说明序列2已经插入完毕
- while (j < mIndex)
- pTempArray[i++] = pDataArray[j++];
- for (i = 0; i < mLength; i++) //将合并后序列重新放入pDataArray
- pDataArray[bIndex + i] = pTempArray[i];
- }
- /********************************************************
- *函数名称:BottomUpMergeSort
- *参数说明:pDataArray 无序数组;
- * iDataNum为无序数据个数
- *说明: 自底向上的归并排序
- *********************************************************/
- void BottomUpMergeSort(int* pDataArray, int iDataNum)
- {
- int *pTempArray = (int *)malloc(sizeof(int) * iDataNum); //临时存放合并后的序列
- int length = 1; //初始有序子序列长度为1
- while (length < iDataNum)
- {
- int i = 0;
- for (; i + 2*length < iDataNum; i += 2*length)
- Merge(pDataArray, pTempArray, i, i + length, i + 2*length);
- if (i + length < iDataNum)
- Merge(pDataArray, pTempArray, i, i + length, iDataNum);
- length *= 2; //有序子序列长度*2
- }
- free(pTempArray);
- }