30. 串联所有单词的子串
https://leetcode-cn.com/problems/substring-with-concatenation-of-all-words/
题目描述
给定一个字符串 s 和一些长度相同的单词 words。找出 s 中恰好可以由 words 中所有单词串联形成的子串的起始位置。
注意子串要与 words 中的单词完全匹配,中间不能有其他字符,但不需要考虑 words 中单词串联的顺序。
示例 1:
输入:
s = "barfoothefoobarman",
words = ["foo","bar"]
输出:[0,9]
解释:
从索引 0 和 9 开始的子串分别是 "barfoo" 和 "foobar" 。
输出的顺序不重要, [9,0] 也是有效答案。
示例 2:
输入:
s = "wordgoodgoodgoodbestword",
words = ["word","good","best","word"]
输出:[]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/substring-with-concatenation-of-all-words
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法 1: 哈希表
思路
naive 的想法是,将 words 里面的单词组合成字符串,然后到 s 里面去找有没有跟它一样的子串。但是,这样子时间复杂度太高了,因为 words 的组合有 words.length!
种,总复杂度差不多就是 s.length * words.length!
了。
那我们反过来想,s 的子串最多只有 s.length
个,那我们只要判断 s 的每个子串是不是刚好由 words 数组里面的所有单词组成的就可以了。所以说,如果子串是刚好匹配 words 的单词的话,说明子串和 words 组成的字符串是两种组合情况,虽然排序不同,但包含的单词种类和数量是一样的。
所以解决方法就很明显了:
- 我们可以用哈希表来记录 words 里面有哪些单词,以及它们分别出现过几次(注意检查每个 s 子串时,哈希表都是新的)。
- 然后开始遍历一个 s 的子串,将它截成一个个单词的长度,去哈希表中查询。
- 如果出现在子串中的单词能在哈希表中找到,就将它的数量 -1,对消掉一个。
- 如果这个单词在哈希表中找不到,或者数量已经变成了 0,就说明这个子串已经不符合我们的要求了,可以停止之后的比较了。
- 如果子串的单词都比较完毕,然后哈希表中所有单词的数量也都刚好变成 0,就说明这个子串就是我们要找的。(这里到判断可以有多种,比如在开始子串比较之前用一个 count 变量来进行计数,如果子串比较结束后 count 刚好等于 words 的长度,就说明找到了符合要求的子串)
- 接着换另一个子串,继续上述步骤。
复杂度分析
- 时间复杂度: ( n − k ) ∗ k (n-k)*k (n−k)∗k,n 是字符串 s 的长度,k 是单词的长度。
- 空间复杂度: m m m,m 是 words 数组的长度,哈希表的空间。
代码
JavaScript Code
/**
* @param {string} s
* @param {string[]} words
* @return {number[]}
*/
var findSubstring = function(s, words) {
const wordLen = words[0].length;
const substrLen = wordLen * words.length;
const initialWordsMap = words.reduce((map, w) => {
map[w] = (map[w] || 0) + 1;
return map;
}, {})
const res = [];
for (let i = 0; i <= s.length - substrLen; i++) {
const wordsMap = {...initialWordsMap};
for (let j = i; j < i + substrLen; j += wordLen) {
const word = s.slice(j, j + wordLen);
if (!(word in wordsMap) || wordsMap[word] == 0) break;
wordsMap[word]--;
}
if (usedUpWords(wordsMap)) res.push(i);
}
return res;
// ******************************************
function usedUpWords(map) {
return Object.values(map).every(n => n == 0);
}
};
/**
* @param {string} s
* @param {string[]} words
* @return {number[]}
*/
var findSubstring = function (s, words) {
const wordSize = words[0].length;
const substringLen = wordSize * words.length;
const wordsCount = {};
words.forEach(w => (wordsCount[w] = (wordsCount[w] || 0) + 1));
const res = [];
for (let i = 0; i <= s.length - substringLen; i++) {
const tempCount = { ...wordsCount };
let count = words.length;
for (let j = i; j < i + substringLen; j += wordSize) {
const word = s.slice(j, j + wordSize);
if (!(word in tempCount) || tempCount[word] <= 0) break;
tempCount[word]--;
count--;
}
if (count === 0) res.push(i);
}
return res;
};
总结
以上就是本文所有内容了,希望能对你有所帮助,能够解决串联所有单词的子串问题。
如果你喜欢本文,也请务必点赞、收藏、评论、转发,这会对我有非常大的帮助。请我喝杯冰可乐也是极好的!
已完结,欢迎持续关注。下次见~