复杂网络:平均场方程于动力学微分方程

本文探讨了平均场理论的局限性,并介绍了两种更为精确的建模方法:反应扩散方程和相互作用粒子系统。前者通过偏微分方程处理连续时间与状态的动力学问题,后者则关注离散随机模型中粒子间的相互作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平均场,从数学上对应常微分方程。如果您已经意识到平均场的局限性,那么我们是否有更合理的建模方法?答案当然是有的。我知道的比较重要的有两大类:
第一类是叫做反应扩散方程(reaction-diffusion equations),另一类叫做相互作用粒子系统(interacting particle systems)。 其中,反应扩散方程是利用偏微分方程的办法,讨论连续时间、连续状态情形的动力学问题。很多时候,学者就直接在原有的平均场方程基础上,加上一个laplcae算子,改装后的方程就是加入了“spatial effects”的反应扩散方程。至于粒子系统,它跟反应扩散方程最大的区别在于,它讨论离散随机模型。简单说,就是系统中有很多相互关联的粒子,粒子状态的演化受到了周围粒子状态的影响。所以,粒子系统跟cellular automata的本质是类似的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值