离散时间系统的频域分析

本文探讨了离散时间系统的频域分析,重点对比了DTFT(离散时间傅里叶变换)与DFT(离散傅里叶变换)的区别。通过MATLAB实验,演示了DTFT和DFT的计算过程,并验证了DTFT的卷积定理。实验中使用了fft函数进行快速傅里叶变换,同时展示了如何计算和验证线性卷积与圆周卷积。
摘要由CSDN通过智能技术生成

这个实验之前,要先弄清楚DFT和DTFT的区别,否则实验过程中很难下手。

以我的理解:

     DTFT是把一个离散序列分成很多细小的点,比如分成500个点,然后在每个细小的点上取某种样本,利用2*pi/500为固定搭配系数,从1,2,3...500依次乘下去,就得到500个某种样本点。基本上,可以看成是连续的,所以我们画图,用plot来画。由于这种样本是虚复数,所以在二维实数坐标上画图时,要取模,相角,或取实部,虚部来画。同时,由于这种样本的特殊,横坐标为1/500,2/500,3/500....500/500。

     而DFT是一个离散序列按照它的长度分成N个点,利用2*pi/N为固定搭配系数,从1,2,3...N依次乘下去,也就得到N个某种样本点而已。于是,依然是一个离散的序列,所以,我们用stem来画它。横坐标单位为n。

 

%%一、计算一个N=12的序列,y[n]=cos(n*pi/6)的DTFT和DFT,并分析它们之间的关系
%DTFT
n=0:11;  x=cos(n*pi/6);
k=0:500;  w=(pi/500)*k;   X=x*(exp(-j*2*pi/500)).^(n'*k);
magX=abs(X); angX=angle(X); realX=real(X); imagX=imag(X);

subplot(3,4,1); plot(w/pi,magX); grid;
xlabel('pi为单位'); ylabel('模值 '); title('(DTFT)模值部分');

subplot(3,4,2); plot(w/pi,angX); grid;
xlabel('pi为单位'); ylabel('弧度'); title('(DTFT)相角部分');
%DFT
Xk=fft(x);
subplot(3,4,3);stem(n,x);
xlabel(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值