烟叶成熟特征:叶色变黄,叶片下垂,主脉变白,茸毛脱落,现成熟斑等。
烟叶未熟期:烟叶叶片展出之后,经过较为短暂的缓慢生长后,迅速开始生长发育,一直到叶片基本定型。在这一段时间内烟叶叶片生长十分旺盛,叶内细胞不断地进行伸长及分裂,叶面积快速变大,同时有机物质通过光合作用形成,主要作用于细胞增长以及呼吸作用,在此时,有机物质在叶内储存非常少,水分含量多,以用于转运发育,叶绿素含量旺盛,叶片整体呈绿色。
烟叶成熟期:叶片经过旺未熟期的生长、定型之后,叶内的干物质积累大于分解,在干物质积累达到最高时,叶片之内的有机物质含量增多,此时叶内水分含量逐渐减少,细胞组织变得充实,有一部分叶绿素被分解,逐渐降低下来,叶色自此由绿变为黄绿。
烟叶过熟期:在叶片生长达到成熟之后,继续开始生长,但是其叶内组织变得疏松,干枯。这段时期一般被称为称烟叶过熟期。在此期间叶片开始逐渐衰老,掉落,叶片的光合能力降低,叶内有机物质逐渐分解与消耗,叶片变薄,组织疏松,叶内叶绿素含量急剧下降,叶色自此变为黄色。
常见的颜色特征包括颜色矩、颜色直方图、颜色相关图等等;纹理特征是描述了图像同质现象的特征,显示了图像内容共同存在的内在特性,常见的纹理特征包括局部二进制模式特征以及梯度直方图特征等;常用的形状特征有几何参数法、边界特征法和傅里叶形状描述法等等。常见的局部特征包括基于区域和点的局部特征,在这些特征当中,应用最广泛的是SIFT特征。在SIFT特征的基础上也形成了一些其他的相关特征,比如PCA-SIFT,Color-SIFT,GLOH等等。
图像特征的表达,最典型的方法就是“词袋”模型。一般都会利用多种方法混合分布来进行拟合,先后提出偏t分布、偏斜正态分布等进行图像特征的表达。
特征包括:RGB和灰度图像的均值、中位数、众数、偏度、峰度等20个参数。
还有的提取的特征为:R、G、H、S、V颜色特征均值, 以及能量ASM、熵ENT、惯性矩INE、相关性CORRL纹理特征, 将这9个变量作为输入参数, 分别建立基于BP神经网络、支持向量机的烟叶成熟度鉴别模型。
算法用无监督学习算法稀疏自编码器,学习特征去分类。