基于身份签名的非对称多方签名方案解析
1. 数论假设
在密码学的证明过程中,数论假设是重要的基础,以下是几种常见的数论假设:
- 离散对数假设(DL 假设) :定义 (G) 为一个阶为素数 (q) 且生成元为 (Q) 的群。对于任何概率多项式时间(P.P.T)的敌手 (A),从元组 (D = (Q, x \cdot Q)) 中计算出 (x \in Z_q^ ) 的优势是可忽略的。
- 计算 Diffie - Hellman 假设(CDH 假设) :同样定义 (G) 为一个阶为素数 (q) 且生成元为 (Q) 的群。对于未知的 (x, y \in Z_q^ ),任何概率多项式时间(P.P.T)的敌手 (A) 从元组 (D = (Q, x \cdot Q, y \cdot Q)) 中计算出 (x \cdot y \cdot Q) 的优势是可忽略的。
- 一次性填充 :如果 (r) 是一个敌手未知的均匀随机元素,并且与 (x) 完全独立,那么 (x + r) 和 (x \cdot r) 是均匀随机的。
2. 加法同态加密
方案采用了著名的 Paillier 加法同态加密方案,该方案基于 (N) - 剩余假设,在选择明文攻击下具有不可区分性(IND - CPA)。以下是该方案的详细内容:
|操作|步骤|
| ---- | ---- |
|密钥生成(Key - Gen)|1. 给定安全参数 (\kappa),生成两个 (\kappa) 位的素数 (p) 和 (q),并计算 (N = pq
超级会员免费看
订阅专栏 解锁全文
45

被折叠的 条评论
为什么被折叠?



