机器学习
文章平均质量分 93
专注于使计算机系统能够从数据中自动学习并改进其性能,以执行特定任务而无需明确编程。
坐望云起
专注人工智能、深度学习、机器学习、计算机视觉、图像处理等领域
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习笔记 - K均值聚类背后的数学和代码
K均值聚类是一种简单高效的机器学习算法,用于将未标记数据分组。算法通过随机初始化质心,计算数据点与质心的欧氏距离来分配簇,并迭代更新质心位置直至收敛。选择合适的K值至关重要,可通过肘部法(WCSS)或轮廓系数评估。K-Means++改进了初始质心选择策略,通过概率化分散质心位置,提升聚类效果和收敛速度。该算法适用于各类数据分类场景,但需注意初始质心选择对结果的影响。原创 2025-09-06 22:57:16 · 112 阅读 · 0 评论 -
机器学习笔记 LightGBM:理解算法背后的数学原理
LightGBM是微软开发的开源、分布式、高性能梯度提升框架。它旨在实现高效、可扩展和准确。该框架利用决策树来提高模型效率并最大限度地减少内存使用量。LightGBM 的开发是为了克服传统梯度提升机 (GBM) 的计算效率低下问题,因为传统梯度提升机需要处理所有特征上的所有数据实例,从而产生大量计算。为了解决这个问题,LightGBM 引入了两项关键技术:基于梯度的单侧采样 (GOSS) 和独占特征捆绑 (EFB)。1、基于梯度的单侧采样(GOSS)原创 2024-07-02 14:57:52 · 2222 阅读 · 0 评论
分享