深度学习
文章平均质量分 89
basketball616
这个作者很懒,什么都没留下…
展开
-
PyTorch安装CUDA标准流程(可解决大部分GPU无法使用问题)
最近一段时间在研究PyTorch中的GPU的使用方法,之前曾经安装过CUDA,不过在PyTorch中调用CUDA时无法使用。考虑到是版本不兼容问题,卸载后尝试了其他的版本,依旧没有能解决问题,指导查阅了很多资料后才找到了解决方案。这里假设,并在conda在创建了一个环境,在环境中已经安装PyTorch相关包等,conda在深度学习研究中能够很好的解决一些Python之间的版本兼容问题。表示目前无可用GPU,我们需要重新安装正确版本的CUDA,确保GPU能够正常使用。原创 2024-07-25 18:55:45 · 1025 阅读 · 0 评论 -
正向传播和反向传播
根据损失函数计算出的误差,通过链式法则(Chain Rule)逐层计算并更新网络中的参数(权重和偏置)以最小化误差的过程。通过正向传播和反向传播的结合,神经网络能够根据输入数据学习并调整参数,从而实现对复杂问题的有效建模和预测。反向传播根据损失函数的梯度,从输出层向隐藏层和输入层传播,计算每个参数的梯度并更新参数。假设我们有一个简单的神经网络模型,包含一个输入层、一个隐藏层和一个输出层,具体如下。将输入数据通过神经网络,计算出预测值的过程。通过网络层,计算得到模型的预测输出。,即模型对输入数据的预测结果。原创 2024-07-12 00:46:55 · 1454 阅读 · 0 评论