文章目录
1. 引言
为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。
通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。
2. n维数组(也称为张量 tensor)
张量 是 机器学习 和 神经网络 的主要数据结构
例子:
0维张量(只有一个元素) 俗称为 标量,常用于表示样本的类别
1维张量(只有一行) 称为 (特征)向量,可以用于表示一个样本的特征
**注:**jpg格式的图片为3通道,而png格式的图片是四通道
3. PyTorch 基本使用
**注:**它虽然被称为 PyTorch,但代码中导入时应是 torch
1. 张量的创建
1. torch.tensor() 根据指定数据创建张量
1. 创建张量标量(传入一个值)
data = torch.tensor(10)
data # tensor(10)
2. 传入 numpy 数组, 由于 data 为 float64, 下面代码也使用该类型
ndarray = np.random.randn(2, 3)
data = torch.tensor(ndarray)
data # tensor([[-0.3198, 0.1038, -0.2568],
# [ 1.5417, -0.0497, -0.6989]], dtype=torch.float64)
3. 传入列表, 下面代码使用默认元素类型 float32
list1 = [[10., 20., 30.], [40., 50., 60.]]
data = torch.tensor(list1)
data # tensor([[10., 20., 30.],
# [40., 50., 60.]])
2. torch.Tensor() 根据指定形状创建张量,也可以用来创建指定数据的张量
1. 创建2行3列的张量, 默认 dtype 为 float32
data = torch.Tensor(2, 3)
data # tensor([[9.1837e-39, 8.4490e-39, 9.6428e-39],
# [8.4490e-39, 1.0194e-38, 9.4592e-39]])
2. 注意: 如果传递列表, 则创建包含指定元素的张量
data = torch.Tensor([10])
data # tensor([10.])
data = torch.Tensor([10, 20])
data # tensor([10., 20.])
3. 创建指定类型的张量
1. 创建2行3列, dtype 为 int32 的张量
data = torch.IntTensor(2, 3)
data # tensor([[1684432176, 758200116, 1717974627],
# [ 875639853, 1667378530, 808269669]], dtype=torch.int32)
2. 注意: 如果传递的元素类型不正确, 则会进行类型转换
data = torch.IntTensor([2.5, 3.3])
data # tensor([2, 3], dtype=torch.int32)
3. 转换成其他的类型
data = torch.ShortTensor() # int16
# data = torch.LongTensor() # int64
# data = torch.FloatTensor() # float32
# data = torch.DoubleTensor() # float64
data
4. 创建线性张量
1. torch.arange() 在指定区间按照步长生成元素 (start, end, step):左闭右开[start,end)
data = torch.arange(0, 10, 2)
data # tensor([0, 2, 4, 6, 8])
2. torch.linspace() 在指定区间按照元素个数生成 (start, end, steps):左闭右闭[start,end]
data = torch.linspace(0, 9, 10)
data # tensor([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
5. 创建随机张量
1. torch.randn() 创建随机张量
# 1. 创建随机张量
data = torch.randn(2, 3) # 创建2行3列张量
print(data) # tensor([[-1.5035, -1.2893, 0.7983],
# [ 0.8991, 0.6286, 0.8412]])
2. torch.random.initial_seed():获取随机数据种子
# 2. 查看随机数种子
print('随机数种子:', torch.random.initial_seed()) # 随机数种子: 19252
3. torch.random.manual_seed():设置随机数据种子
# 3. 随机数种子设置 设置随机数种子后即:伪随机,生成的都是固定的
torch.random.manual_seed(100)
data = torch.randn(2, 3)
print(data)
print('随机数种子:', torch.random.initial_seed())
"""
tensor([[ 0.3607, -0.2859, -0.3938],
[ 0.2429, -1.3833, -2.3134]])
随机数种子: 100
"""
6. 创建全0、全1、全指定值张量
1. torch.zeros(shape)、torch.zeros_like(data) 创建全0张量
# 1. 创建指定形状全0张量
data = torch.zeros(2, 3)
print(data) # tensor([[0., 0., 0.],
# [0., 0., 0.]])
# 2. 根据张量形状创建全0张量
data = torch.randn(3, 3)
data = torch.zeros_like(data)
print(data) # tensor([[0., 0., 0.],
# [0., 0., 0.],
# [0., 0., 0.]])
2. torch.ones(shape)、torch.ones_like(data) 创建全1张量
# 1. 创建指定形状全1张量
data = torch.ones(2, 3)
print(data) # tensor([[1., 1., 1.],
# [1., 1., 1.]])
# 2. 根据张量形状创建全1张量
data = torch.ones_like(data)
print(data) # tensor([[1., 1., 1.],
# [1., 1., 1.]])
3. torch.full(shape,num)、torch.full_like(data,num) 创建全为指定值张量
# 1. 创建指定形状指定值的张量
data = torch.full([2, 3], 10)
print(data) # tensor([[10, 10, 10],
# [10, 10, 10]])
# 2. 根据张量形状创建指定值的张量
data = torch.full_like(data, 20)
print(data) # tensor([[20, 20, 20],
# [20, 20, 20]])
7. 总结
- 创建张量的方式
- torch.tensor() 根据指定数据创建张量
- torch.Tensor() 根据形状创建张量, 其也可用来创建指定数据的张量
- torch.IntTensor()、torch.FloatTensor()、torch.DoubleTensor() 创建指定类型的张量
- 创建线性和随机张量
- torch.arrange() 和 torch.linspace() 创建线性张量
- torch.random.initial_seed() 和 torch.random.manual_seed() 随机种子设置
- torch.randn() 创建随机张量
- 创建01张量
- torch.ones() 和 torch.ones_like() 创建全1张量
- torch.zeros() 和 torch.zeros_like() 创建全0张量
- torch.full() 和 torch.full_like() 创建全为指定值张量
- 张量元素类型转换
- data.type(torch.DoubleTensor)
- data.double()
2. 张量的元素类型转换
1. tensor对象名.type(torch.TypeTensor) / tensor对象名 = torch.TypeTensor()
data = torch.full([2, 3], 10)
print(data.dtype) # torch.int64
# 将 data 元素类型转换为 float64 类型
data = data.type(torch.DoubleTensor)
# data = torch.DoubleTensor()
# 转换为其他类型
# data = data.type(torch.ShortTensor)
# data = data.type(torch.IntTensor)
# data = data.type(torch.LongTensor)
# data = data.type(torch.FloatTensor)
print(data.dtype) # torch.float64
2. tensor对象名.type()
data = torch.full([2, 3], 10)
print(data.dtype) # torch.int64
# 将 data 元素类型转换为 float64 类型
data = data.double()
# 转换为其他类型
# data = data.short()
# data = data.int()
# data = data.long()
# data = data.float()
print(data.dtype) # torch.float64
3. 总结
-
张量元素类型转换
-
data.type(torch.DoubleTensor)
-
data.double()
-
3. 张量的类型转换
1. 张量 与 ndarray
1. 张量 -> ndarray
1. tensor对象名.numpy():共享内存
# 将张量转换为 numpy 数组
data_tensor = torch.tensor([2, 3, 4])
# 使用张量对象中的 numpy 函数进行转换
data_numpy = data_tensor.numpy()
print(type(data_tensor)) # <class 'torch.Tensor'>
print(type(data_numpy)) # <class 'numpy.ndarray'>
# 注意: data_tensor 和 data_numpy 共享内存
# 修改其中的一个,另外一个也会发生改变
# data_tensor[0] = 100
data_numpy[0] = 100
print(data_tensor) # tensor([100, 3, 4])
print(data_numpy) # [100 3 4]
2. tensor对象名.numpy().copy():不共享内存
# 对象拷贝避免共享内存
data_tensor = torch.tensor([2, 3, 4])
# 使用张量对象中的 numpy 函数进行转换,通过copy方法拷贝对象
data_numpy = data_tensor.numpy().copy()
print(type(data_tensor)) # <class 'torch.Tensor'>
print(type(data_numpy)) # <class 'numpy.ndarray'>
# 注意: data_tensor 和 data_numpy 此时不共享内存
# 修改其中的一个,另外一个不会发生改变
# data_tensor[0] = 100
data_numpy[0] = 100
print(data_tensor) # tensor([2, 3, 4])
print(data_numpy) # [100 3 4]
2. ndarray -> 张量
1. torch.from_numpy(data_np):共享内存
data_numpy = np.array([2, 3, 4])
# 将 numpy 数组转换为张量类型
data_tensor = torch.from_numpy(data_numpy)
# nunpy 和 tensor 共享内存
# data_numpy[0] = 100
data_tensor[0] = 100
print(data_tensor) # tensor([100, 3, 4], dtype=torch.int32)
print(data_numpy) # [100 3 4]
2. torch.from_numpy(data_np.copy()):不共享内存
data_numpy = np.array([2, 3, 4])
# 将 numpy 数组转换为张量类型
data_tensor = torch.from_numpy(data_numpy.copy())
# nunpy 和 tensor 共享内存
# data_numpy[0] = 100
data_tensor[0] = 100
print(data_tensor) # tensor([100, 3, 4], dtype=torch.int32)
print(data_numpy) # [2 3 4]
3. torch.tensor(data_np):不共享内存
data_numpy = np.array([2, 3, 4])
# 将 numpy 数组转换为张量类型
data_tensor = torch.tensor(data_numpy)
# nunpy 和 tensor 不共享内存
# data_numpy[0] = 100
data_tensor[0] = 100
print(data_tensor) # tensor([100, 3, 4], dtype=torch.int32)
print(data_numpy) # [2 3 4]
2. 张量 与 数值
1. data_tensor.item()
# 当张量只包含一个元素时, 可以通过 item() 函数提取出该值
data = torch.tensor([30,])
print(data.item()) # 30
data = torch.tensor(30)
print(data.item()) # 30
3. 总结
-
张量转换为 numpy 数组
- data_tensor.numpy()
- data_tensor.numpy().copy()
-
numpy 转换为张量
- torch.from_numpy(data_numpy)
- torch.tensor(data_numpy)
-
标量张量和数字转换
- data.item()
4. 张量的数值运算
1. 基本运算(加减乘除取负号绝对值)
"""
加减乘除取负号绝对值:
add、sub、mul、div、neg、abs
add_、sub_、mul_、div_、neg_、abs_(其中带下划线的版本会修改原数据)
"""
data = torch.randint(-5, 10, [2, 3])
print('data:',data)
# 1. 不修改原数据
new_data = data.add(2) # 等价 new_data = data + 10
print('new_data:',new_data)
print('data:',data)
# 2. 直接修改原数据 注意: 带下划线的函数为修改原数据本身
data.add_(2) # 等价 data += 2
print('data:',data)
# 3. 其他函数
print('sub:',data.sub(100))
print('mul:',data.mul(100))
print('div:',data.div(100))
print('neg:',data.neg())
print('abs:',data.abs())
"""
data: tensor([[ 5, 3, 4],
[ 3, 3, -3]])
new_data: tensor([[ 7, 5, 6],
[ 5, 5, -1]])
data: tensor([[ 5, 3, 4],
[ 3, 3, -3]])
data: tensor([[ 7, 5, 6],
[ 5, 5, -1]])
sub: tensor([[ -93, -95, -94],
[ -95, -95, -101]])
mul: tensor([[ 700, 500, 600],
[ 500, 500, -100]])
div: tensor([[ 0.0700, 0.0500, 0.0600],
[ 0.0500, 0.0500, -0.0100]])
neg: tensor([[-7, -5, -6],
[-5, -5, 1]])
abs: tensor([[7, 5, 6],
[5, 5, 1]])
"""
2. 点乘运算
-
点乘指(Hadamard)的是 两个 同维矩阵 对应位置 的元素 相乘,使用torch.mul() 或 运算符 * 实现
data1 = torch.tensor([[1, 2], [3, 4]]) data2 = torch.tensor([[5, 6], [7, 8]]) # 第一种方式 data = torch.mul(data1, data2) print(data) # 第二种方式 data = data1 * data2 print(data) """ tensor([[ 5, 12], [21, 32]]) tensor([[ 5, 12], [21, 32]]) """
3. 矩阵乘法
-
(n,m)x(m,p) = (n,p)
-
方式一:运算符 @ 用于进行两个矩阵的乘积运算
# 点积运算 data1 = torch.tensor([[1, 2], [3, 4], [5, 6]]) data2 = torch.tensor([[5, 6], [7, 8]]) # 方式一: data3 = data1 @ data2 print("data3-->", data3) # data3--> tensor([[19, 22], # [43, 50], # [67, 78]])
-
**方式二:torch.matmul **
# 点积运算 data1 = torch.tensor([[1, 2], [3, 4], [5, 6]]) data2 = torch.tensor([[5, 6], [7, 8]]) # 方式二: data3 = torch.matmul(data1, data2) print("data3-->", data3) # data3--> tensor([[19, 22], # [43, 50], # [67, 78]])
-
4. 总结
-
张量基本运算函数
- add、sub、mul、div、neg等函数
- add_、sub_、mul_、div_、neg_等函数
-
张量的点乘运算
- mul 和 运算符*
-
点积运算
-
运算符 @ 用于进行两个矩阵的点乘运算
-
torch.matmul 对进行点乘运算的两矩阵形状没有限定,对数输入的 shape 不同的张量, 对应的最后几个维度必须符合矩阵运算规则
-
5. 张量的运算函数
- Sum,mean,sqrt,pow,exp,log等
data = torch.randint(0, 10, [2, 3], dtype=torch.float64)
print(data)
# 1. 计算均值
# 注意: tensor 必须为 Float 或者 Double 类型
print('总体mean:',data.mean())
print('各列mean:',data.mean(dim=0)) # 按列计算均值
print('各行mean:',data.mean(dim=1)) # 按行计算均值
# 2. 计算总和
print('总体sum:',data.sum())
print('各列sum:',data.sum(dim=0))
print('各行sum:',data.sum(dim=1))
# 3. 计算平方
print('总体 2 次方:',torch.pow(data,2))
# 4. 计算平方根
print('总体求 平方根:',data.sqrt())
# 5. 指数计算, e^n 次方
print('总体 e^n 次方:',data.exp())
# 6. 对数计算
print('总体求 ln:',data.log()) # 以 e 为底
print('总体求 log2:',data.log2())
print('总体求 lg:',data.log10())
"""
tensor([[8., 9., 4.],
[5., 7., 2.]], dtype=torch.float64)
总体mean: tensor(5.8333, dtype=torch.float64)
各列mean: tensor([6.5000, 8.0000, 3.0000], dtype=torch.float64)
各行mean: tensor([7.0000, 4.6667], dtype=torch.float64)
总体sum: tensor(35., dtype=torch.float64)
各列sum: tensor([13., 16., 6.], dtype=torch.float64)
各行sum: tensor([21., 14.], dtype=torch.float64)
总体 2 次方: tensor([[64., 81., 16.],
[25., 49., 4.]], dtype=torch.float64)
总体求 平方根: tensor([[2.8284, 3.0000, 2.0000],
[2.2361, 2.6458, 1.4142]], dtype=torch.float64)
总体 e^n 次方: tensor([[2.9810e+03, 8.1031e+03, 5.4598e+01],
[1.4841e+02, 1.0966e+03, 7.3891e+00]], dtype=torch.float64)
总体求 ln: tensor([[2.0794, 2.1972, 1.3863],
[1.6094, 1.9459, 0.6931]], dtype=torch.float64)
总体求 log2: tensor([[3.0000, 3.1699, 2.0000],
[2.3219, 2.8074, 1.0000]], dtype=torch.float64)
总体求 lg: tensor([[0.9031, 0.9542, 0.6021],
[0.6990, 0.8451, 0.3010]], dtype=torch.float64)
"""
6. 张量的索引操作
# 随机生成数据
data = torch.randint(0, 10, [4, 5])
print(data)
"""
tensor([[3, 0, 1, 3, 1],
[9, 3, 0, 6, 4],
[9, 6, 0, 0, 7],
[4, 7, 1, 0, 1]])
"""
1. 简单行、列索引
print(data[0]) # tensor([3, 0, 1, 3, 1])
print(data[:, 0]) # tensor([3, 9, 9, 4])
2. 列表索引
# 返回 (0, 1)、(1, 2) 两个位置的元素
print(data[[0, 1], [1, 2]]) # tensor([0, 0])
# 返回 0、1 行的 1、2 列共4个元素
print(data[[[0], [1]], [1, 2]]) # tensor([[0, 1],
# [3, 0]])
3. 范围索引
# 前3行的前2列数据
print(data[:3, :2]) # tensor([[3, 0],
# [9, 3],
# [9, 6]])
# 第2行到最后的前2列数据
print(data[2:, :2]) # tensor([[9, 6],
# [4, 7]])
4. 布尔索引
# 第三列大于5的行数据
print(data[data[:, 2] > 5]) # tensor([], size=(0, 5), dtype=torch.int64)
# 第二行大于5的列数据
print(data[:, data[1] > 5]) #tensor([[3, 3],
# [9, 6],
# [9, 0],
# [4, 0]])
5. 多维索引
data = torch.randint(0, 10, [3, 4, 5])
print(data)
# 获取0轴上的第一个数据
print(data[0, :, :])
# 获取1轴上的第一个数据
print(data[:, 0, :])
# 获取2轴上的第一个数据
print(data[:, :, 0])
"""
tensor([[[9, 2, 0, 1, 8],
[9, 1, 3, 3, 2],
[8, 9, 1, 5, 1],
[3, 5, 6, 1, 3]],
[[3, 9, 9, 4, 9],
[6, 1, 7, 1, 7],
[0, 9, 8, 2, 7],
[4, 8, 1, 7, 1]],
[[3, 2, 4, 4, 2],
[3, 2, 5, 1, 2],
[8, 7, 6, 2, 4],
[3, 8, 5, 8, 0]]])
tensor([[9, 2, 0, 1, 8],
[9, 1, 3, 3, 2],
[8, 9, 1, 5, 1],
[3, 5, 6, 1, 3]])
tensor([[9, 2, 0, 1, 8],
[3, 9, 9, 4, 9],
[3, 2, 4, 4, 2]])
tensor([[9, 9, 8, 3],
[3, 6, 0, 4],
[3, 3, 8, 3]])
"""
7. 张量的形状操作
1. 使用 shape 属性或者 size 方法都可以获得张量的形状
data = torch.tensor([[10, 20, 30], [40, 50, 60]])
print(data.shape, data.shape[0], data.shape[1]) # torch.Size([2, 3]) 2 3
print(data.size(), data.size(0), data.size(1)) # torch.Size([2, 3]) 2 3
2. 使用 reshape 函数修改张量形状
new_data = data.reshape(1, 6)
print(new_data.shape) # torch.Size([1, 6])
print(new_data) # tensor([[10, 20, 30, 40, 50, 60]])
new_data2 = data.reshape(-1)
print(new_data2.shape) # torch.Size([6])
print(new_data2) # tensor([10, 20, 30, 40, 50, 60])
3. squeeze() 和 unsqueeze() 函数
# squeeze 函数删除形状为 1 的维度(降维),unsqueeze 函数添加形状为1的维度(升维)。
mydata1 = torch.tensor([1, 2, 3, 4, 5])
print('mydata1--->', mydata1.shape, mydata1) # 一个普通的数组 1维数据
mydata2 = mydata1.unsqueeze(dim=0)
print('在0位置上 拓展维度:', mydata2, mydata2.shape) # 1*5
mydata3 = mydata1.unsqueeze(dim=1)
print('在1位置上 拓展维度:', mydata3, mydata3.shape) # 5*1
mydata4 = mydata1.unsqueeze(dim=-1)
print('在-1位置上 拓展维度:', mydata4, mydata4.shape) # 5*1
mydata5 = mydata4.squeeze()
print('压缩维度(删除形状为1的维度):', mydata5, mydata5.shape) # 5
"""
mydata1---> torch.Size([5]) tensor([1, 2, 3, 4, 5])
在0位置上 拓展维度: tensor([[1, 2, 3, 4, 5]]) torch.Size([1, 5])
在1位置上 拓展维度: tensor([[1],
[2],
[3],
[4],
[5]]) torch.Size([5, 1])
在-1位置上 拓展维度: tensor([[1],
[2],
[3],
[4],
[5]]) torch.Size([5, 1])
压缩维度(删除形状为1的维度): tensor([1, 2, 3, 4, 5]) torch.Size([5])
"""
4. transpose() 和 permute()函数
# transpose 函数可以实现交换张量形状的指定维度
# 例如: 一个张量的形状为 (2, 3, 4) 可以通过 transpose 函数把 3 和 4 进行交换, 将张量的形状变为 (2, 4, 3)
# permute 函数可以一次交换更多的维度
data = torch.tensor(np.random.randint(0, 10, [3, 4, 5]))
print('data shape:', data.size()) # data shape: torch.Size([3, 4, 5])
# 1 交换位置1和2维度
mydata2 = torch.transpose(data, 1, 2)
print('mydata2.shape--->', mydata2.shape) # mydata2.shape---> torch.Size([3, 5, 4])
# 2 将data 的形状修改为 (4, 5, 3), 需要变换多次
mydata3 = torch.transpose(data, 0, 1)
mydata4 = torch.transpose(mydata3, 1, 2)
print('mydata4.shape--->', mydata4.shape) # mydata4.shape---> torch.Size([4, 5, 3])
# 3 使用 permute 函数将形状修改为 (4, 5, 3)
# 3-1 方法1
mydata5 = torch.permute(data, [1, 2, 0])
print('mydata5.shape--->', mydata5.shape) # mydata5.shape---> torch.Size([4, 5, 3])
# 3-2 方法2
mydata6 = data.permute([1, 2, 0])
print('mydata6.shape--->', mydata6.shape) # mydata6.shape---> torch.Size([4, 5, 3])
5. view() 和 contiguous()函数
"""
view 函数也可以用于修改张量的形状,但只能用于存储在整块内存中的张量。
在 PyTorch 中,有些张量是由不同的数据块组成的,它们并没有存储在整块的内存中,view 函数无法对这样的张量进行变形处理
例如: 一个张量经过了 transpose 或者 permute 函数的处理之后,就无法使用 view 函数进行形状操作
若要使用view函数, 需要使用 contiguous() 变成连续以后再使用 view 函数
contiguous():将张量转换为整块内存的张量
is_contiguous():判断张量是否使用整块内存
"""
data = torch.tensor( [[10, 20, 30],[40, 50, 60]])
print('data--->', data, data.shape) # data---> tensor([[10, 20, 30],[40, 50, 60]]) torch.Size([2, 3])
# 1 判断是否使用整块内存
print(data.is_contiguous()) # True
# 2 view
mydata2 = data.view(3, 2)
print('mydata2--->', mydata2, mydata2.shape) # torch.Size([3, 2])
# 3 判断是否使用整块
print('mydata2.is_contiguous()--->', mydata2.is_contiguous()) # True
# 4 使用 transpose 函数修改形状
mydata3 = torch.transpose(data, 0, 1)
print('mydata3--->', mydata3, mydata3.shape) # torch.Size([3, 2])
print('mydata3.is_contiguous()--->', mydata3.is_contiguous()) # False
# 5 需要先使用 contiguous 函数转换为整块内存的张量,再使用 view 函数
print (mydata3.contiguous().is_contiguous()) # True
mydata4 = mydata3.contiguous().view(2, 3)
print('mydata4--->', mydata4.shape, mydata4) # torch.Size([2, 3])
6. 总结
- reshape 函数可以在保证张量数据不变的前提下改变数据的维度
- squeeze 和 unsqueeze 函数可以用来增加或者减少维度
- transpose 函数可以实现交换张量形状的指定维度, permute 可以一次交换更多的维度
- view 函数也可以用于修改张量的形状, 但是它要求被转换的张量内存必须连续,所以一般配合 contiguous 函数使用
8. 张量的拼接操作
1. torch.cat():两个张量根据指定的维度拼接起来,不改变其余维度数
# 注意:拼接时,除要操作的维度外,其它维度要保持一致
data1 = torch.randint(0, 10, [1, 2, 3])
data2 = torch.randint(0, 10, [1, 2, 3])
print('data1:',data1)
print('data2:',data2)
# 1. 按0维度拼接
new_data = torch.cat([data1, data2], dim=0)
print('new_data:',new_data)
print('new_data.shape:',new_data.shape)
# 2. 按1维度拼接
new_data = torch.cat([data1, data2], dim=1)
print('new_data:',new_data)
print('new_data.shape:',new_data.shape)
# 3. 按2维度拼接
new_data = torch.cat([data1, data2], dim=2)
print('new_data:',new_data)
print('new_data.shape:',new_data.shape)
"""
data1: tensor([[[2, 9, 5],
[8, 0, 9]]])
data2: tensor([[[3, 4, 2],
[2, 0, 8]]])
new_data: tensor([[[2, 9, 5],
[8, 0, 9]],
[[3, 4, 2],
[2, 0, 8]]])
new_data.shape: torch.Size([2, 2, 3])
new_data: tensor([[[2, 9, 5],
[8, 0, 9],
[3, 4, 2],
[2, 0, 8]]])
new_data.shape: torch.Size([1, 4, 3])
new_data: tensor([[[2, 9, 5, 3, 4, 2],
[8, 0, 9, 2, 0, 8]]])
new_data.shape: torch.Size([1, 2, 6])
"""
9. 自动微分模块
1. 概念
训练神经网络时,最常用的算法就是 反向传播。在该算法中,参数(模型权重)会根据损失函数关于对应
参数的梯度进行调整。
为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎。它支持任意计算图的自动梯度计算:
2. 例子
1. 当 x 为标量时梯度的计算
import torch
def test01():
# 数据:特征 + 目标值
# 特征
x = torch.tensor(5)
# 目标值
y = torch.tensor(0.)
# 设置 要更新的权重 和 偏置的初始值
# 要对谁求梯度:就要把 requires_grad 设置为 True
# 权重
w = torch.tensor(1., requires_grad=True, dtype=torch.float32)
# 偏置
b = torch.tensor(3., requires_grad=True, dtype=torch.float32)
# 设置网络的输出值
z = x * w + b # 矩阵点乘
# 设置损失函数,并进行损失的计算
# (预测值, 真实值)
loss = torch.nn.MSELoss()
loss = loss(z, y)
# 自动微分
loss.backward()
print(loss.item()) # 损失值
# 打印 w,b 变量的梯度
# backward 函数计算的梯度值会存储在张量的 grad 变量中
print("w的梯度:", w.grad)
print("b的梯度", b.grad)
# 使用随机梯度下降(SGD)更新参数
learning_rate = 0.01
# 更新权重和偏置
with torch.no_grad():
w -= learning_rate * w.grad
b -= learning_rate * b.grad
# 打印更新后的权重和偏置值
print("更新后的权重:", w)
print("更新后的偏置:", b)
if __name__ == '__main__':
test01()
"""
64.0
w的梯度: tensor(80.)
b的梯度 tensor(16.)
更新后的权重: tensor(0.2000, requires_grad=True)
更新后的偏置: tensor(2.8400, requires_grad=True)
"""
2. 当 x 有多个维度时梯度的计算
import torch
def test02():
# 输入张量 2*5
x = torch.ones(2,5)
# 目标值是 2*3
y = torch.zeros(2,3)
# 设置 要更新的权重 和 偏置的初始值
w = torch.randn(5, 3,requires_grad=True)
b = torch.randn(3, requires_grad=True)
# 设置 网络的输出值
z = torch.matmul(x, w) + b # 矩阵乘法 (2 * 5 @ 5 * 3 + b)
print(z.shape)
# 设置损失函数,并进行损失的计算
loss = torch.nn.MSELoss()
loss = loss(z, y)
print(loss.item())
# 自动微分
loss.backward()
# 打印 w,b 变量的梯度
# backward 函数计算的梯度值会存储在张量的 grad 变量中
print("w的梯度:", w.grad)
print("b的梯度:", b.grad)
if __name__ == '__main__':
test02()
"""
torch.Size([2, 3])
1.0808545351028442
w的梯度: tensor([[0.5029, 0.6720, 0.8583],
[0.5029, 0.6720, 0.8583],
[0.5029, 0.6720, 0.8583],
[0.5029, 0.6720, 0.8583],
[0.5029, 0.6720, 0.8583]])
b的梯度: tensor([0.5029, 0.6720, 0.8583])
"""