结存对数据库性能的影响压测

在无并发和并发100的场景下,针对1000万、500万、200万不同数据量的查询进行了测试。无并发时,数据量减半对性能提升不明显;而在并发100的情况下,数据量从1000万减少到500万,性能只提升了一倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

表名:log_request_test1(1000万)``log_request_test2(500万)``log_request_test3(200万)

由于是新表,所以不存在收缩数据库。
CREATE TABLE log_request_test1 (
ID bigint(20) NOT NULL AUTO_INCREMENT,
TRANSACTION_ID varchar(40) DEFAULT NULL,
LOG_LEVEL varchar(5) DEFAULT NULL,
HOST_NAME varchar(50) DEFAULT NULL,
HOST_IP varchar(20) DEFAULT NULL,
SERVICE_ID int(11) DEFAULT NULL,
CLIENT_IP varchar(20) DEFAULT NULL,
REQ_PATH varchar(50) DEFAULT NULL,
CONTENT longtext,
USER_ID varchar(20) DEFAULT NULL,
TTID varchar(10) DEFAULT NULL,
CREATED_DATE datetime(3) NOT NULL,
APP_NAMESPACE varchar(100) DEFAULT NULL,
PRIMARY KEY (ID),
KEY Idx_Req_CreatedDate (CREATED_DATE),
KEY Idx_Req_TransactionId (TRANSACTION_ID,CREATED_DATE)
) ENGINE=InnoDB AUTO_INCREMENT=24391720 DEFAULT CHARSET=utf8

测试场景1: 无并发情况下查询10月30日后, ttid是 xch1的数据:

总量是1000万的查询,需要10秒
在这里插入图片描述

总量是500万的查询,需要8.9秒

在这里插入图片描述

总量是200万的查询,需要8.2秒

在这里插入图片描述

结论1:

无并发情况下,数据从1000万减少到500万, 200万,性能提升不大

测试场景2:并发100情况下查询10月30日后, ttid是 xch1的数据:

  1. 1000万 ,并发执行结束需要457秒

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 500万 ,并发执行结束需要426秒

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 200万 ,并发执行结束需要241秒

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结论2:

并发100情况下,数据从1000万减少到500万 性能改善不大,降200万,性能提升1倍

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松鼠编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值