在构建语言模型(LLM)的过程中,数据的管理和优化是一个关键环节。Argilla 提供了一个开源的数据管理平台,帮助开发者通过更快速的数据整理和反馈机制,提升语言模型的性能。在这篇文章中,我们将介绍如何通过 ArgillaCallbackHandler 跟踪 LLM 的输入和响应,从而生成可用于未来微调的数据集。
技术背景介绍
LLM 的性能往往取决于训练数据的质量和精度。因此,记录和管理 LLM 的输入和输出,可以为模型的优化和微调提供丰富的数据支持。Argilla 提供了一整套 MLOps 支持,从数据标签到模型监控,并允许通过人机反馈进行数据处理。
核心原理解析
Argilla 的 ArgillaCallbackHandler
是一个用于跟踪 LLM 操作的工具。它可以记录每次模型输入(prompt)和模型输出(response),生成数据集以便于后续分析和改进。这种机制特别适合于诸如问答、摘要生成或翻译等特定任务的数据生成。
代码实现演示
下面演示如何安装相关包并设置环境:
# 安装相关包
%pip install --upgrade --quiet langchain langchain-openai argilla
import os
# 设置 Argilla API 凭证
os.environ["ARGILLA_API_URL"] = "your-argilla-api-url"
os.environ["ARGILLA_API_KEY"] = "your-argilla-api-key"
# 设置 OpenAI API 凭证
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"
设置 Argilla 数据集
创建用于存储 LLM 实验结果的数据集:
import argilla as rg
from packaging.version import parse as parse_version
if parse_version(rg.__version__) < parse_version("1.8.0"):
raise RuntimeError("`FeedbackDataset` 只能在 Argilla v1.8.0 或更高版本使用,请升级 `argilla`。")
dataset = rg.FeedbackDataset(
fields=[
rg.TextField(name="prompt"),
rg.TextField(name="response"),
],
questions=[
rg.RatingQuestion(
name="response-rating",
description="你如何评价回复的质量?",
values=[1, 2, 3, 4, 5],
required=True,
),
rg.TextQuestion(
name="response-feedback",
description="你对回复有什么反馈?",
required=False,
),
],
guidelines="请评价回复的质量并提供反馈。",
)
rg.init(
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
dataset.push_to_argilla("langchain-dataset")
跟踪 LLM 的输入输出
通过 ArgillaCallbackHandler
跟踪 LLM 的操作:
from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
应用场景分析
通过 Argilla 的追踪和管理,开发者可以轻松生成包含 LLM 输入和输出对的数据集。这对于特定任务的数据优化和模型微调非常有用,例如问答生成、文本摘要以及机器翻译等任务。
实践建议
- 定期检查数据集的质量和反馈信息,以便持续优化模型。
- 利用 Argilla 的反馈机制,收集用户的输入并对模型输出进行评价,从而改进模型性能。
- 在实验中注意记录设置参数,以便分析不同配置对结果的影响。
如果遇到问题欢迎在评论区交流。
—END—