利用 Argilla 实现 LLM 数据追踪和优化

在构建语言模型(LLM)的过程中,数据的管理和优化是一个关键环节。Argilla 提供了一个开源的数据管理平台,帮助开发者通过更快速的数据整理和反馈机制,提升语言模型的性能。在这篇文章中,我们将介绍如何通过 ArgillaCallbackHandler 跟踪 LLM 的输入和响应,从而生成可用于未来微调的数据集。

技术背景介绍

LLM 的性能往往取决于训练数据的质量和精度。因此,记录和管理 LLM 的输入和输出,可以为模型的优化和微调提供丰富的数据支持。Argilla 提供了一整套 MLOps 支持,从数据标签到模型监控,并允许通过人机反馈进行数据处理。

核心原理解析

Argilla 的 ArgillaCallbackHandler 是一个用于跟踪 LLM 操作的工具。它可以记录每次模型输入(prompt)和模型输出(response),生成数据集以便于后续分析和改进。这种机制特别适合于诸如问答、摘要生成或翻译等特定任务的数据生成。

代码实现演示

下面演示如何安装相关包并设置环境:

# 安装相关包
%pip install --upgrade --quiet langchain langchain-openai argilla

import os

# 设置 Argilla API 凭证
os.environ["ARGILLA_API_URL"] = "your-argilla-api-url"
os.environ["ARGILLA_API_KEY"] = "your-argilla-api-key"

# 设置 OpenAI API 凭证
os.environ["OPENAI_API_KEY"] = "your-openai-api-key"

设置 Argilla 数据集

创建用于存储 LLM 实验结果的数据集:

import argilla as rg
from packaging.version import parse as parse_version

if parse_version(rg.__version__) < parse_version("1.8.0"):
    raise RuntimeError("`FeedbackDataset` 只能在 Argilla v1.8.0 或更高版本使用,请升级 `argilla`。")

dataset = rg.FeedbackDataset(
    fields=[
        rg.TextField(name="prompt"),
        rg.TextField(name="response"),
    ],
    questions=[
        rg.RatingQuestion(
            name="response-rating",
            description="你如何评价回复的质量?",
            values=[1, 2, 3, 4, 5],
            required=True,
        ),
        rg.TextQuestion(
            name="response-feedback",
            description="你对回复有什么反馈?",
            required=False,
        ),
    ],
    guidelines="请评价回复的质量并提供反馈。",
)

rg.init(
    api_url=os.environ["ARGILLA_API_URL"],
    api_key=os.environ["ARGILLA_API_KEY"],
)

dataset.push_to_argilla("langchain-dataset")

跟踪 LLM 的输入输出

通过 ArgillaCallbackHandler 跟踪 LLM 的操作:

from langchain_community.callbacks.argilla_callback import ArgillaCallbackHandler
from langchain_core.callbacks.stdout import StdOutCallbackHandler
from langchain_openai import OpenAI

argilla_callback = ArgillaCallbackHandler(
    dataset_name="langchain-dataset",
    api_url=os.environ["ARGILLA_API_URL"],
    api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]

llm = OpenAI(temperature=0.9, callbacks=callbacks)
llm.generate(["Tell me a joke", "Tell me a poem"] * 3)

应用场景分析

通过 Argilla 的追踪和管理,开发者可以轻松生成包含 LLM 输入和输出对的数据集。这对于特定任务的数据优化和模型微调非常有用,例如问答生成、文本摘要以及机器翻译等任务。

实践建议

  • 定期检查数据集的质量和反馈信息,以便持续优化模型。
  • 利用 Argilla 的反馈机制,收集用户的输入并对模型输出进行评价,从而改进模型性能。
  • 在实验中注意记录设置参数,以便分析不同配置对结果的影响。

如果遇到问题欢迎在评论区交流。
—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值