若xi>=1 求 x1+x2+x3+...+xk = n 正整数解的组数
n个完全相同的元素,分成k组,每组至少一个元素,一共的分法
解法:n个相同的球排成一排 n-1个空,插k-1个板子 答案为 C(n-1,k-1)
x1+x2+x3+...+xk = n xi>=ai>=0 则令yi=xi-ai+1 设t=a1+..+ak 则y1+y2+..+yk = n-t+k = m
答案为C(m-1,k-1)即C(n-t+k-1,k-1)
若xi>=1 求 x1+x2+x3+...+xk = n 正整数解的组数
n个完全相同的元素,分成k组,每组至少一个元素,一共的分法
解法:n个相同的球排成一排 n-1个空,插k-1个板子 答案为 C(n-1,k-1)
x1+x2+x3+...+xk = n xi>=ai>=0 则令yi=xi-ai+1 设t=a1+..+ak 则y1+y2+..+yk = n-t+k = m
答案为C(m-1,k-1)即C(n-t+k-1,k-1)