递归实现全排列和组合

 今天在别人博客看STL时发现也有关于用递归实现全排列问题,和我以前代码相似,但是时隔太久,不知道怎么写的了。由于最近在学STL。自己做的时候发现用vector容器来存储数据,在使用回朔发会非常容易。其代码如下:

#include<iostream>
#include<vector>
using namespace std;
void display(vector<int> vec,vector<int> dest)
{
    unsigned int i;
    if(vec.size()==1)
    {
        for(i=0;i<dest.size();i++)
            cout<<dest[i]<<" ";
        cout<<vec[0]<<endl;
        return ;
    }
    for(i=0;i<vec.size();i++)  //每次递归的条件分支由存放在vector里的数据来决定
    {
        int temp=vec[i];
        vector<int>::iterator iter=vec.begin()+i;
        dest.push_back(temp);
        vec.erase(iter);
        display(vec,dest);
        vec.insert(iter,temp);
        dest.pop_back();
    }
}

int main()
{
    int a[]={1,2,3,4};
    vector<int> vec(a,a+4);
    vector<int> dest;
    display(vec,dest);
    return 0;
}

以下是以前C语言实现的版本:

用递归实现的全排列,算是一个简单的算法,已经测试通过。
其中还考虑了有重复数字的情况,如1,1,3,
没有写终端输入,测试时可直接改程序
#include <stdio.h>
#include <stdlib.h>
#define N 3

void swap(int,int);//交换2个数
void pailie(int);//递归实现算法
int a[N]={1,2,3};

int main(void)
{
	pailie(0);
	return 0;
}

void pailie(int n)
{
	int i,j;
	if(n==N)
	{
		for(j=0;j<N;j++)
			printf("%d",a[j]);
		printf("\n");
		return;
	}//出口

	for(i=n;i<N;i++)
	{
	/*对于重复的情况,直接跳过*/
		if(a[n]==a[i]&&n!=i) continue; 
		swap(i,n);
		pailie(n+1);
		swap(i,n);
	}
}

void swap(int i,int n)
{
	int b;
	b = a[i];
	a[i] = a[n];
	a[n] = b;
}
递归过程:
1. 首先从n个数中选取编号最大的数,然后在剩下的n-1个数里面选取m-1个数,继续下去,直到从n-(m-1)个数中选取1个数为止,这是一个递归的过程。
2. 从n个数中选取编号次小的一个数,继续执行1步,直到当前可选编号最大的数为m。

具体实现:
#include <stdio.h>
#include <stdlib.h>
#define N 4 
#define M 2           /*取出组合数的个数*/
int a[N]={1,2,3,4}; /*给出的全集*/
int b[M];                /*用于存储组合中的元素,其中存储的是a[N]元素的下标*/
void combi(int,int);

int main(void)
{
	combi(N,M);
	return 0;
}

void combi(int n,int m)
{
	int i,j;
	for(i=n;i>=m;i--)
	{
		b[m-1] = i-1;
		if(m>1) combi(i-1,m-1);
		else
		{
			for(j=M-1;j>=0;j--)
				printf("%d",a[b[j]]);
			printf("\n");
		}
	}
	return;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值