8、CiMPG+F:CafeOBJ 规范的证明生成与修复工具

CiMPG+F:CafeOBJ 规范的证明生成与修复工具

1. 引言

在形式化验证领域,为给定目标生成证明是一项关键任务。CiMPG+F 作为一款针对 CafeOBJ 规范的证明生成与修复工具,为解决这一问题提供了有效的途径。本文将详细介绍 CiMPG+F 的工作原理、主要功能以及如何使用它来生成证明。

2. 证明生成算法

CiMPG+F 的主要算法如图 2 所示,其核心步骤如下:

Require: Module m, goal g, depth d, implication bound i, variables bound v.
Ensure: p contains the proof for g or ∅ if the proof is not found.
1: p ← ∅
2: if inductionRequired(g) then (g, m, p) ← applyInduction(m, g)
3: end if
4: return genProof(m, g, d, i, v, p)
5: function genProof(m, g, d, i, v, p)
6:
    if hasVars(g) or multipleGoals(g) then (g, m, p) ← thOfCons(m, g, p)
7:
    end if
8:
    (found, p′) ← discharge(m, g, i, v, p)
9:
    if ¬found & (d > 0) then
10:
        cs ← generate(m, g)
11:
【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值