1-线性表-2: 有序顺序表的合并(C语言实现)

题目:

请设计一个能够将有序顺序表LA,LB进行合并的算法,要求合并后的顺序表LC依然有序。

例如:
LA的元素 1 3 5 7
LB的元素 2 4
LC的元素 1 2 3 4 5 7
其中,LA和LB的长度不超过1000,当中的元素为非递减排序。

输入格式:

第一行输入LA的长度

第二行输入LA的元素

第三行输入LB的长度

第四行输入LB的元素

输出格式:

输入合并后顺序表中各元素的值,值之间用一个空格间隔。

输入样例1:

4
1 3 5 7
2
2 4

输出样例1:

1 2 3 4 5 7 

输入样例2:

6
1 2 3 4 5 6
3
7 8 9

输出样例2:

1 2 3 4 5 6 7 8 9 

代码如下:

#include <stdio.h>
#include <stdlib.h> //要使用的malloc()函数定义在这个头文件中 ,动态分配内存

#define MAX 2000

typedef struct Seq
{
    int elem[MAX];
    int length;

} RSeq;

RSeq init(int arr[], int len) // 初始化表
{
    RSeq *R;
    R = (struct Seq *)malloc(sizeof(struct Seq));
    R->length = 0;
    for (int i = 0; i < len; i++)
    {
        R->elem[R->length] = arr[i];
        R->length++;
    }
    return (*R);
}

// 合并顺序表LA和LB
RSeq merge(RSeq LA, RSeq LB)
{
    RSeq LC;
    LC.length = LA.length + LB.length;

    int i = 0; // 表A的位置
    int j = 0; // 表B的位置
    int k = 0;
    while (i < LA.length && j < LB.length)
    {
        if (LA.elem[i] > LB.elem[j])
        {
            LC.elem[k] = LB.elem[j++];
        }
        else
        {
            LC.elem[k] = LA.elem[i++];
        }
        k++;
    }

    while (i < LA.length)
    {
        LC.elem[k++] = LA.elem[i++];
    }
    while (j < LB.length)
    {
        LC.elem[k++] = LB.elem[j++];
    }
    return (LC);
}

// 主函数
int main()
{
    int a[MAX], b[MAX];
    int ca, cb;
    char temp;
    scanf("%d", &ca);
    for (int i = 0; i < ca; i++)
    {
        scanf("%d", &a[i]);
    }
    scanf("%d", &cb);
    for (int i = 0; i < cb; i++)
    {
        scanf("%d", &b[i]);
    }
    RSeq LA, LB, LC;
    LA = init(a, ca);
    LB = init(b, cb);
    LC = merge(LA, LB);
    for (int i = 0; i < LC.length; i++)
    {
        printf("%d ", LC.elem[i]);
    }
}

运行结果:

为了编写一个名为 `exp2-10.cpp` 的程序,用于使用单链表存储一元多项式并实现它们的相乘运算,我们首先需要设计一个数据结构表示多项式项(包括系数和指数),以及一个表示多项式链表的数据结构。接着,我们将实现多项式的创建、插入、查询以及相乘函数。 ```cpp #include <iostream> using namespace std; // 定义多项式项 struct Term { int coefficient; int exponent; }; // 单链表节点 struct PolynomialNode { Term term; PolynomialNode* next; // 指向下一个项 }; // 创建一个新的多项式节点 PolynomialNode* createTerm(int coef, int exp) { PolynomialNode* newNode = new PolynomialNode(); newNode->term.coefficient = coef; newNode->term.exponent = exp; newNode->next = nullptr; return newNode; } // 创建多项式链表 PolynomialNode* createPolynomial(vector<Term>& terms) { PolynomialNode* head = nullptr; for (const auto& term : terms) { head = createTerm(term.coefficient, term.exponent); head->next = head->prev; // 初始化头节点的next指针为nullptr head->prev = head; // 初始化每个节点的prev指针为其自身 } return head; } // 相乘两个多项式 PolynomialNode* multiplyPolynomials(PolynomialNode* poly1, PolynomialNode* poly2) { PolynomialNode* resultHead = nullptr; PolynomialNode* carry = nullptr; while (poly1 && poly2) { Term productTerm = {poly1->term.coefficient * poly2->term.coefficient, poly1->term.exponent + poly2->term.exponent}; if (productTerm.exponent >= 0) { PolynomialNode* newNode = createTerm(productTerm.coefficient, productTerm.exponent); newNode->next = carry ? carry : resultHead; carry = newNode; if (resultHead) resultHead->prev = newNode; else resultHead = newNode; } if (poly1->next) poly1 = poly1->next; else poly1 = nullptr; if (poly2->next) poly2 = poly2->next; else poly2 = nullptr; } if (carry) carry->prev = nullptr; return resultHead; } int main() { vector<Term> poly1_terms = {{1, 2}, {3, 4}}; // 1x^2 + 3x^4 vector<Term> poly2_terms = {{2, 1}, {4, 3}}; // 2x^1 + 4x^3 PolynomialNode* poly1 = createPolynomial(poly1_terms); PolynomialNode* poly2 = createPolynomial(poly2_terms); PolynomialNode* result = multiplyPolynomials(poly1, poly2); // 打印结果多项式 PolynomialNode* temp = result; while (temp) { cout << temp->term.coefficient << "x^" << temp->term.exponent << " "; temp = temp->next; } cout << endl; deletePolyTree(result); // 自定义的删除链表的函数,防止内存泄露 return 0; } // 假设deletePolyTree是一个辅助函数,用于删除整个链表 ``` 在这个例子中,`multiplyPolynomials` 函数实现了两个多项式的乘法运算,通过迭代遍历每个输入多项式项,生成对应于每个指数的新项并将它们连接起来。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值