8的倍数——题解(容斥原理)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bbbblzy/article/details/79964713

题目描述


小x最近对数字8很感兴趣,有8进制,2008奥运会之类的。
现在小x想知道,在[x,y]区间里,有多少个数能被8整除。
小y觉得题目太简单,于是给出n个其他数,问在[x,y]区间里,有多少个数能被8整除且不能被这n个数整除


分析

啊啊啊啊啊,一道很水的容斥原理啦QWQ,枚举出这个n个数所有和8的lcm的情况,奇减偶加,这道题最麻烦的地方在于枚举出所有的情况,看那些超级大佬都是dfs枚举情况,蒟蒻的我实在太菜(lan)了,就用二进制枚举情况咯!!!

//By Bibi
///                 .-~~~~~~~~~-._       _.-~~~~~~~~~-.
///             __.'              ~.   .~              `.__
///           .'//                  \./                  \\`.
///        .'//                     |                     \\`.
///       .'// .-~"""""""~~~~-._     |     _,-~~~~"""""""~-. \\`.
///     .'//.-"                 `-.  |  .-'                 "-.\\`.
///   .'//______.============-..   \ | /   ..-============.______\\`.
/// .'______________________________\|/______________________________`.
#include<bits/stdc++.h>
#define rep(i,a,b) for(long long i=a;i<=b;++i)
#define dep(i,a,b) for(long long i=a;i>=b;--i)
using namespace std;
const long long MAXN=20;
typedef long long ll;
ll read(){
    ll sum=0,flag=1;
    char c;
    for(;c<'0'||c>'9';c=getchar())if(c=='-') flag=-1;
    for(;c>='0'&&c<='9';c=getchar())sum=(sum<<1)+(sum<<3)+c-'0';
    return sum*flag;
} 
ll n;
ll a[MAXN];
ll ans1,ans2;
ll x,y;
ll gcd(ll a,ll b){
    return b? gcd(b,a%b):a;
}
void init(){
    n=read();
    rep(i,0,n-1) a[i]=read();
    x=read();y=read();
}
void work1(){
    rep(i,0,(1<<n)-1){
        ll tot=0,true_num=8;
        rep(j,0,n-1){
            if(i&(1<<j)){
                true_num*=a[j]/gcd(true_num,a[j]);
                if(true_num>x-1) break;
                tot++;
            }
        }
        if(tot&1) ans1-=(x-1)/true_num;
        else ans1+=(x-1)/true_num;
    }
}
void work2(){
    rep(i,0,(1<<n)-1){
        ll tot=0,true_num=8;
        rep(j,0,n-1){
            if(i&(1<<j)){
                true_num*=a[j]/gcd(true_num,a[j]);
                if(true_num>y) break;
                tot++;
            }
        }
        if(tot&1) ans2-=(y)/true_num;
        else ans2+=(y)/true_num;
    }
}
int main(){
    init();
    work1();
    work2();
    printf("%lld\n",ans2-ans1);
    return 0;
}
阅读更多

没有更多推荐了,返回首页