# 【最短路各种方法求解一题（模板题）】POJ 2387 Til the Cows Come Home

Problem Description

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

#include<cstdio>
using namespace std;
const int INF = 0x3f3f3f3f;
int Map[1005][1005], n;
int vis[1005], dist[1005];
void dijkstra(int u)
{
int i, Min, j, k;
for(i = 1; i <= n; i++)
{
vis[i] = 0;
dist[i] = Map[u][i];
}
vis[u] = 1;
for(i = 1; i < n; i++)
{
Min = INF;
for(j = 1; j <= n; j++)
{
if(Min > dist[j] && !vis[j])
{
Min = dist[j];
u = j;
}
}
vis[u] = 1;
for(k = 1; k <= n; k++)
{
if(dist[k] > dist[u] + Map[u][k] && Map[u][k] != INF && !vis[k])
{
dist[k] = dist[u] + Map[u][k];
}
}
}
printf("%d\n", dist[1]);
}
int main()
{
int T, i, j, u, v, w;
while(~scanf("%d %d", &T, &n))
{
for(i = 0; i <= n; i++)
{
for(j = 0; j <= n; j++)
{
if(i == j) Map[i][j] = 0;
else Map[i][j] = INF;
}
}
while(T--)
{
scanf("%d %d %d", &u, &v, &w);
if(Map[u][v] > w) Map[u][v] = Map[v][u] = w;
}
dijkstra(n);
}
return 0;
}

bellman_Ford

#include<cstdio>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
struct node
{
int u, v, w;
};
node Map[2005];
int n, m, dist[1005];
void bellman_Ford(int u)
{
int i, j;
for(i = 1; i <= n; i++)
{
dist[i] = INF;
}
dist[u] = 0;
for(i = 1; i <= n - 1; i++)
{
for(j = 1; j <= m; j++)
{
if(dist[Map[j].v] > dist[Map[j].u] + Map[j].w)
dist[Map[j].v] = dist[Map[j].u] + Map[j].w;
if(dist[Map[j].u] > dist[Map[j].v] + Map[j].w)
dist[Map[j].u] = dist[Map[j].v] + Map[j].w;
}
}
printf("%d\n", dist[1]);
}
int main()
{
int i;
while(~scanf("%d %d", &m, &n))
{
for(i = 1; i <= m; i++)
{
scanf("%d %d %d", &Map[i].u, &Map[i].v, &Map[i].w);
}
bellman_Ford(n);
}
return 0;
}

Spfa + 前向星

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
struct node
{
int to, w, next;
};
node Map[40005];
int vis[1005], dist[1005];
void spfa(int u)
{
int i, to, w;
queue<int> q;
for(i = 1; i <= n; i++)
{
vis[i] = 0;
dist[i] = INF;
}
vis[u] = 1; dist[u] = 0;
q.push(u);
while(!q.empty())
{
u = q.front();
q.pop();
vis[u] = 0;
for(i = head[u]; ~i; i = Map[i].next)
{
to = Map[i].to, w = Map[i].w;
if(dist[to] > dist[u] + w)
{
dist[to] = dist[u] + w;
if(!vis[to])
{
vis[to] = 1;
q.push(to);
}
}
}
}
printf("%d\n", dist[1]);
}
int main()
{
int T, u, v, w;
while(~scanf("%d %d", &T, &n))
{
int cnt = 0;
while(T--)
{
scanf("%d %d %d", &u, &v, &w);
Map[cnt].to = v;
Map[cnt].w = w;
Map[cnt].to = u;
Map[cnt].w = w;
}
spfa(n);
}
return 0;
}

dijkstra + 优先队列

#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#define INF 0x3f3f3f
using namespace std;
struct node
{
int to, w;
bool operator < (const node &b) const {
return w > b.w;
}
};
int n, x, dist[1005];
vector<node> a[1005];
void dijkstra(int s)
{
memset(dist, INF, sizeof(dist));
dist[s] = 0;
priority_queue<node> q;
q.push((node){s, dist[s]});
while(!q.empty())
{
node u = q.top(); q.pop();
for(int i = 0; i < a[u.to].size(); i++)
{
node v = a[u.to][i];
if(dist[v.to] > dist[u.to] + v.w)
{
dist[v.to] = dist[u.to] + v.w;
q.push((node){v.to, dist[v.to]});
}
}
}
printf("%d\n", dist[1]);
}
int main()
{
int m, u, v, w;
while(~scanf("%d %d", &m, &n))
{
while(m--)
{
scanf("%d %d %d", &u, &v, &w);
a[u].push_back((node){v, w});
a[v].push_back((node){u, w});
}
dijkstra(n);
}
return 0;
}