【线段树 && 离线处理 && 维护区间规定下标的和】HDU - 4288 Coder

Problem Dscription

给你n个操作,操作分为三种,(1): add x,往集合里面添加元素x。(2): del x,从集合里面移除元素x。(3): sum 求下标mod 5 == 3的对应元素值的和。集合满足从小到大

思路:

离线处理:就是先输入完数据后在处理。线段树维护两个量,num代表该区间有几个数。sum[]代表该区间mod5==1的和,mod5==2的和,mod5==3的和,mod5==4,mod5==0的和。分别对应下标sum[0], sum[1], sum[2], sum[3], sum[4]。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson root<<1
#define rson root<<1|1
#define MID int mid = (l+r)/2
const int maxn = 100055;
struct node
{
    int num;
    ll sum[5];
};
node tree[4*maxn];
char s[maxn][5];
ll a[maxn], data[maxn];
void build(int root, int l, int r)//初始化
{
    memset(tree[root].sum, 0, sizeof(tree[root].sum));
    tree[root].num = 0;//一开始一个元素都没有
    if(l == r) return;
    MID;
    build(lson, l, mid);
    build(rson, mid+1, r);
}
void Merge(int root)
{
    for(int i = 0; i < 5; i++)
    {
        int num = tree[lson].num;
        //左儿子mod多少的和,和父亲是一样的。右边的得考虑左边有多少个元素,才能确定。
        tree[root].sum[i] = tree[lson].sum[i] + tree[rson].sum[((i-num%5)+5)%5];
    }
    tree[root].num = tree[lson].num +tree[rson].num;
}
void updata(int root, int l, int r, int p, ll v, int flag)
{
    if(l == r)//找到p下标
    {
        tree[root].num += flag;//维护区间元素的个数
        tree[root].sum[0] = v;//当前区间下标为1,1mod5==1所以sum[0] = v;
        return;
    }
    MID;
    if(p <= mid)
    {
        updata(lson, l, mid, p, v, flag);
    }
    else updata(rson, mid+1, r, p, v, flag);
    Merge(root);//向上更新
}
int main()
{
    int n, i;
    while(~scanf("%d", &n))
    {
        int cnt = 1;
        for(i = 0; i < n; i++)
        {
            scanf("%s", s[i]);
            if(s[i][0] != 's')
            {
                scanf("%lld", &data[i]);
                a[cnt++] = data[i];
            }
        }
        if(cnt == 1)
        {
            for(i = 0; i < n; i++)
            {
                if(s[i][0] == 's')
                printf("0\n");
            }
            continue;
        }
        sort(a+1, a +cnt);
        cnt = unique(a+1, a+cnt) - a - 1;
        build(1, 1, cnt);//按照出现过的元素建树
        for(i = 0; i < n; i++)
        {
            int p = lower_bound(a+1, a +cnt, data[i]) - a;//返回data[i]在a[]中对应的下标
            if(s[i][0] == 's')
            {
                printf("%lld\n", tree[1].sum[2]);//输出mod5==3的和
            }
            else if(s[i][0] == 'a')
            {
                updata(1, 1, cnt, p, data[i], 1);
            }
            else updata(1, 1, cnt, p, 0, -1);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值