Problem Dscription
给你n个操作,操作分为三种,(1): add x,往集合里面添加元素x。(2): del x,从集合里面移除元素x。(3): sum 求下标mod 5 == 3的对应元素值的和。集合满足从小到大
思路:
离线处理:就是先输入完数据后在处理。线段树维护两个量,num代表该区间有几个数。sum[]代表该区间mod5==1的和,mod5==2的和,mod5==3的和,mod5==4,mod5==0的和。分别对应下标sum[0], sum[1], sum[2], sum[3], sum[4]。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson root<<1
#define rson root<<1|1
#define MID int mid = (l+r)/2
const int maxn = 100055;
struct node
{
int num;
ll sum[5];
};
node tree[4*maxn];
char s[maxn][5];
ll a[maxn], data[maxn];
void build(int root, int l, int r)//初始化
{
memset(tree[root].sum, 0, sizeof(tree[root].sum));
tree[root].num = 0;//一开始一个元素都没有
if(l == r) return;
MID;
build(lson, l, mid);
build(rson, mid+1, r);
}
void Merge(int root)
{
for(int i = 0; i < 5; i++)
{
int num = tree[lson].num;
//左儿子mod多少的和,和父亲是一样的。右边的得考虑左边有多少个元素,才能确定。
tree[root].sum[i] = tree[lson].sum[i] + tree[rson].sum[((i-num%5)+5)%5];
}
tree[root].num = tree[lson].num +tree[rson].num;
}
void updata(int root, int l, int r, int p, ll v, int flag)
{
if(l == r)//找到p下标
{
tree[root].num += flag;//维护区间元素的个数
tree[root].sum[0] = v;//当前区间下标为1,1mod5==1所以sum[0] = v;
return;
}
MID;
if(p <= mid)
{
updata(lson, l, mid, p, v, flag);
}
else updata(rson, mid+1, r, p, v, flag);
Merge(root);//向上更新
}
int main()
{
int n, i;
while(~scanf("%d", &n))
{
int cnt = 1;
for(i = 0; i < n; i++)
{
scanf("%s", s[i]);
if(s[i][0] != 's')
{
scanf("%lld", &data[i]);
a[cnt++] = data[i];
}
}
if(cnt == 1)
{
for(i = 0; i < n; i++)
{
if(s[i][0] == 's')
printf("0\n");
}
continue;
}
sort(a+1, a +cnt);
cnt = unique(a+1, a+cnt) - a - 1;
build(1, 1, cnt);//按照出现过的元素建树
for(i = 0; i < n; i++)
{
int p = lower_bound(a+1, a +cnt, data[i]) - a;//返回data[i]在a[]中对应的下标
if(s[i][0] == 's')
{
printf("%lld\n", tree[1].sum[2]);//输出mod5==3的和
}
else if(s[i][0] == 'a')
{
updata(1, 1, cnt, p, data[i], 1);
}
else updata(1, 1, cnt, p, 0, -1);
}
}
return 0;
}