2020牛客暑期多校训练营(第七场) Topo Counting

本文详细解析了牛客暑期多校训练营中的一道动态规划题目——Topo Counting。通过分析样例和题目描述,提出三种关键的状态转移情况,并解释了如何利用这些情况构建O(n^2)复杂度的解决方案。代码实现包含在文章中。
摘要由CSDN通过智能技术生成

原题
题目描述
在这里插入图片描述
样例1
输入

2 1073741789

输出

31

样例2
输入

3 1073741789

输出

7954100

思路
我们一拍脑袋,因为 n ≤ 3000 n≤3000 n3000似乎没有后效性,似乎求得是最优解 ,所以盲猜这是一道 d p dp dp
我们会发现每个肉片只受制于架子上的两个节点,所以本题的核心做法就是维护架子以及连在架子上的肉片的形态。
在状态转移时大致会有以下 3 3 3种情况 : :

  • 第一种是一个完整的 D R G ( n ) DRG(n) DRG(n)只删除了第一个节点,,设为 h ( n ) h(n) h(n)。对于 h ( n ) h(n) h(n), 接下来有两种删除方法, 分别会变成 f ( n – 2 , n ) f(n–2,n) f(n2n)以及 g ( n – 1 , n ) g(n–1,n) g(n1n)
    在这里插入图片描述
  • 第二种是在一个完整的 D R G ( n ) DRG(n) DRG(n)中删除了第一行中两个以上的连续节点,这类形态有第一行中剩余节点数 i i i和第二行的节点数 j j j控制,设为 f ( i , j ) f(i,j) f(ij)。对于 f ( i , j ) f(i,j) f(ij),接下来也有两种删除方法,,分别会变成 f ( i – 1 , j ) f(i–1,j) f(i1j)以及 ( f ( i , j – 1 ) (f(i,j–1) (f(i,j1) h ( j – 1 ) h(j–1) h(j1)中的其中一种 + + +一个分离出去的完整肉片)。
    在这里插入图片描述
  • 第三种是在一个完整的 D R G ( n ) DRG(n) DRG(n)中删除了第一行和第二行的第一个节点, 然后连续删除了第一块肉片的左半边部分,,这类形态由架子上第一行的剩余节点数 i i i以及第一块肉片左半边剩余节点数 j j j控制,设为 g ( i , j ) g(i,j) g(i,j)。对于 g ( i , j ) g(i,j) g(i,j)也有两种情况,分别变成 g ( i , j – 1 ) g(i,j–1) g(i,j1)以及 h ( i ) + h(i)+ h(i)+分离出去的一个肉片。
    在这里插入图片描述
    这样的时间复杂度是 O ( O( O( n n n2 ) ) ),可以过。具体细节可以看以下代码。
    代码
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=3005,maxx=18e6+5;
ll n,mx,mod,u[maxx],v[maxx],h[maxn],dp[maxn][maxn];
int ksm(ll a,ll b){int k=1;while(b){if(b&1)k=k*a%mod;b>>=1;a=a*a%mod;}return k;}
int C(int a,int b){if(a<b||b<0) return 0;return 1ll*u[a]*v[b]%mod*v[a-b]%mod;}
int CC(int a,int b){return (C(2*a-b,a)-C(2*a-b,a-b-1)+mod)%mod;}
int main()
{
    scanf("%lld%lld",&n,&mod);u[0]=dp[0][0]=1;mx=2*n*n-2;
    for(int i=1;i<maxx;i++)u[i]=u[i-1]*i%mod;v[maxx-1]=ksm(u[maxx-1],mod-2);
    for(int i=maxx-2;~i;i--)v[i]=v[i+1]*(i+1)%mod;
    for(int i=0;i<n;i++)
        for(int j=0,k=mx-min(i,j)*n*2-i-j;j<n;j++,k=mx-min(i,j)*n*2-i-j)
        {
            if(i==j && j==n-1)continue;
            if(j==i+1)for(int v=0;v<=n;v++)dp[i+1][j]=(dp[i+1][j]+dp[i][j]*C(k-v,n*2-v)%mod*CC(n,v)%mod)%mod;
            else
            {
                dp[i+1][j]=(dp[i+1][j]+dp[i][j])%mod;
                if(i==j)dp[i][j+1]=(dp[i][j+1]+dp[i][j])%mod;
                else dp[i][j+1]=(dp[i][j+1]+dp[i][j]*C(k,n*2)%mod*CC(n,0)%mod)%mod;
            }     
        }
    printf("%lld",dp[n-1][n-1]);
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值