洛谷T438955 不同路径问题 题解 组合数

Lackofgod走迷宫

题目描述

L a c k o f g o d Lackofgod Lackofgod 身处一个 n ∗ m n*m nm 的迷宫内,他初始位于 ( 1 , 1 ) (1,1) (1,1) 处,迷宫的终点位于 ( n , m ) (n,m) (n,m) L a c k o f g o d Lackofgod Lackofgod 每次只能往右或往下移动一步,即从 ( x , y ) (x,y) (x,y) 移动到 ( x + 1 , y ) (x+1,y) (x+1,y) ( x , y + 1 ) (x,y+1) (x,y+1),迷宫里存在 k k k 个障碍物, L a c k o f g o d Lackofgod Lackofgod 不能走到迷宫外,也不能撞到障碍物,请告诉他有多少种方案可以走到迷宫终点,答案对 1 0 9 + 7 10^9+7 109+7 取模

输入格式

第一行输入三个整数 n , m , k n,m,k n,m,k ,表示迷宫的大小以及障碍物的个数

接下来 k k k 行,每行输入两个整数 x i , y i x_i,y_i xi,yi,表示第 i i i 个障碍物的位置,保证起点和终点不存在障碍物,保证任意两个障碍物不重叠

1 ≤ n , m ≤ 1 0 6 1\le n,m \le 10^6 1n,m106 n ∗ m ≥ 2 n*m\ge2 nm2 0 ≤ k ≤ m i n ( n ∗ m − 2 , 20 ) 0\le k\le min(n*m-2,20) 0kmin(nm2,20)

1 ≤ x i ≤ n 1\le x_i\le n 1xin, 1 ≤ y i ≤ m 1\le y_i\le m 1yim

输出格式

一行输出一个整数 a n s ans ans,表示走到迷宫终点的方案数( m o d   1 0 9 + 7 mod\ 10^9+7 mod 109+7

样例 #1

样例输入 #1

3 4 2
2 2
2 3

样例输出 #1

2

原题链接

洛谷T438955——传送门

思路

求迷宫不同路径条数,最先想到的是dp递推,但是我们发现本题的n和m很大,用O(n*m)的递推算法显然是会超时的,所以就得放弃另辟蹊径。经过千辛万苦的观察,我们发现障碍物的个数最多20个,所以可以通过不经过障碍物的方案数==不考虑障碍物的方案数-经过障碍物的方案数这个等式来计算得到答案。显然根据学习可知,求迷宫内一个点到另一个点的方案数可采用求组合数的方式,即从点A(x1,y1)到点B(x2,y2)的(x1≤x2且y1≤y2)方案数为C(x2-x1+y2-y1,x2-x1),即从(x2-x1)次向下走和(y2-y1)次向右走中选择(x2-x1)次向下走。
不考虑障碍物的方案数:C(n-1+m-1,n-1)
经过障碍物的方案数:设dpi表示不经过其他障碍物,到达第i个障碍物的方案数。所以dpi就等于 到达第i个障碍物的方案数 减去 ∑(经过该障碍物前面某个障碍物再到达第i个障碍物的方案数)(详见代码)。最后,经过障碍物的方案数就等于 ∑(dpi乘以从该障碍物到终点的方案数)。显然,这就需要对读入的障碍物的坐标进行排序。
注意,在这计算过程中用到了减法取模运算,所以结果有可能是个负数,需要判断为负数时加上模数。我就是因为这点被卡了半天。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
// 因为组合数的分母最大取到n+m-2,所以N要开到2e6
const int N = 2e6 + 6;
const int MOD = 1e9 + 7;
int fact[N], invf[N];
// 快速幂
int qpow(int a, int b, int p)
{
    int res = 1;
    while (b)
    {
        if (b & 1)
            res = (1ll * res * a) % p;
        a = (1ll * a * a) % p;
        b /= 2;
    }
    return res % p;
}
// 对组合数进行初始化
void init(int n)
{
    fact[0] = 1;
    for (int i = 1; i <= n; i++)
        fact[i] = (1ll * fact[i - 1] * i) % MOD;
    invf[n] = qpow(fact[n], MOD - 2, MOD);
    for (int i = n - 1; i >= 0; i--)
        invf[i] = (1ll * invf[i + 1] * (i + 1)) % MOD;
}
// 求组合数,其中用到乘法逆元
int C(int a, int b, int p)
{
    return (ll)fact[a] * invf[b] % p * invf[a - b] % p;
}
// 结构体存储障碍物坐标
struct node
{
    int x, y;
};
// 障碍物按纵坐标排序,纵坐标相同按横坐标排序
bool cmp(node a, node b)
{
    if (a.x == b.x)
    {
        return a.y < b.y;
    }
    else
    {
        return a.x < b.x;
    }
}

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    // 初始化组合数的函数调用,勿忘
    init(2e6 + 5);

    int n, m, k;
    cin >> n >> m >> k;
    // 障碍物数组
    vector<node> obstacle(k);
    for (int i = 0; i < k; i++)
    {
        cin >> obstacle[i].x >> obstacle[i].y;
    }
    // 排序
    sort(obstacle.begin(), obstacle.end(), cmp);
    // dp数组
    ll dp[26] = {0};
    // 求dpi
    for (int i = 0; i < k; i++)
    {
        int xi = obstacle[i].x;
        int yi = obstacle[i].y;
        // 不考虑前面障碍物到达该障碍物的方案数
        dp[i] = C(xi - 1 + yi - 1, xi - 1, MOD);
        // 减去经过前面障碍物到达该障碍物的方案数
        for (int j = 0; j < i; j++)
        {
            int xj = obstacle[j].x;
            int yj = obstacle[j].y;
            // 如果yi小于yj,说明第j个障碍物不在第i个障碍物前面,需要continue
            if (yi < yj)
                continue;
            dp[i] = (dp[i] - (ll)dp[j] * C(xi - xj + yi - yj, xi - xj, MOD) % MOD) % MOD;
        }
    }
    // 不考虑障碍物到达终点的方案数
    ll ans = C(n - 1 + m - 1, n - 1, MOD);
    // 减去经过障碍物到达终点的方案数
    for (int i = 0; i < k; i++)
    {
        int xi = obstacle[i].x;
        int yi = obstacle[i].y;
        ans = (ans - (ll)dp[i] * C(n - xi + m - yi, n - xi, MOD) % MOD) % MOD;
    }
    // 特判取模相减后ans<0的情况
    if (ans < 0)
        ans += MOD;

    cout << ans;

    return 0;
}
  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值