洛谷 P1757 通天之分组背包 题解

通天之分组背包

题目背景

直达通天路·小 A 历险记第二篇

题目描述

01 01 01 背包问世之后,小 A 对此深感兴趣。一天,小 A 去远游,却发现他的背包不同于 01 01 01 背包,他的物品大致可分为 k k k 组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。

输入格式

两个数 m , n m,n m,n,表示一共有 n n n 件物品,总重量为 m m m

接下来 n n n 行,每行 3 3 3 个数 a i , b i , c i a_i,b_i,c_i ai,bi,ci,表示物品的重量,利用价值,所属组数。

输出格式

一个数,最大的利用价值。

样例 #1

样例输入 #1

45 3
10 10 1
10 5 1
50 400 2

样例输出 #1

10

提示

0 ≤ m ≤ 1000 0 \leq m \leq 1000 0m1000 1 ≤ n ≤ 1000 1 \leq n \leq 1000 1n1000 1 ≤ k ≤ 100 1\leq k\leq 100 1k100 a i , b i , c i a_i, b_i, c_i ai,bi,ciint 范围内。

原题

洛谷P1757——传送门

代码

#include <bits/stdc++.h>
using namespace std;
#define max_Heap(x) priority_queue<x, vector<x>, less<x>>
#define min_Heap(x) priority_queue<x, vector<x>, greater<x>>
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;

int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

    int m, n;
    cin >> m >> n;
    unordered_map<int, vector<int>> mp; // 离散化分组的存储
    vector<int> weight(n);
    vector<int> value(n);
    int num; // 第几组
    for (int i = 0; i < n; i++)
    {
        cin >> weight[i] >> value[i];
        cin >> num;
        mp[num].push_back(i); // 将物品序号保存在所在组内
    }
    // dp数组
    vector<ll> dp(m + 1, 0);
    // 遍历所有组
    for (auto it = mp.begin(); it != mp.end(); it++)
    {
        num = it->first;
        // 遍历背包
        for (int i = m; i >= 0; i--)
        {
            // 遍历组内所有物品,以先遍历背包再遍历组内物品的顺序可以保证组内最多选一个物品
            for (int j = 0; j < mp[num].size(); j++)
            {
                int idx = mp[num][j]; // 物品的序号
                if (i >= weight[idx])
                {
                    dp[i] = max(dp[i], dp[i - weight[idx]] + 1ll * value[idx]);
                }
            }
        }
    }
    cout << dp[m];

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值