洛谷 P2602 [ZJOI2010] 数字计数 题解 数位dp

[ZJOI2010] 数字计数

题目描述

给定两个正整数 a a a b b b,求在 [ a , b ] [a,b] [a,b] 中的所有整数中,每个数码(digit)各出现了多少次。

输入格式

仅包含一行两个整数 a , b a,b a,b,含义如上所述。

输出格式

包含一行十个整数,分别表示 0 ∼ 9 0\sim 9 09 [ a , b ] [a,b] [a,b] 中出现了多少次。

样例 #1

样例输入 #1

1 99

样例输出 #1

9 20 20 20 20 20 20 20 20 20

数据规模与约定

  • 对于 30 % 30\% 30% 的数据,保证 a ≤ b ≤ 1 0 6 a\le b\le10^6 ab106
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ a ≤ b ≤ 1 0 12 1\le a\le b\le 10^{12} 1ab1012

原题

洛谷P2602——传送门

思路

数位dp && 记忆化搜索 : 定义 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示枚举到第 i i i 个位置,digit的个数为 j j j 时,不同数中digit个数的总和,即 d p [ p o s ] [ s u m ] dp[pos][sum] dp[pos][sum]。dfs五个参数:pos为此时的位置,sum表示dfs到状态下的digit个数,digit表示对应数字,bound表示前面每一位是否都是上界,lead_0表示是否前面全是0。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

ll dp[20][20];                                               // dp记录[pos][sum]状态下的满足条件的不同数digit个数的总和
int a[20];                                                   // a[]记录数字串
ll dfs(int pos, int sum, int digit, bool bound, bool lead_0) // pos为此时的位置,sum表示dfs到状态下的digit个数,digit表示对应数字,bound表示前面每一位是否都是上界,lead_0表示是否前面全是0
{
    if (pos == 0) // 枚举完每一位时返回
        return sum;
    if (!bound && dp[pos][sum] != -1)
        return dp[pos][sum];
    int max_num; // 可枚举的该位的数的上界
    if (bound)
        max_num = a[pos];
    else
        max_num = 9;
    ll res = 0; // 统计此时的答案
    for (int i = 0; i <= max_num; i++)
    {
        if (lead_0 && i == 0)
            res = (res + dfs(pos - 1, sum, digit, bound && (i == a[pos]), 1));
        else
            res = (res + dfs(pos - 1, sum + (i == digit), digit, bound && (i == a[pos]), 0));
    }
    if (!bound && !lead_0) // 没在边界时,记录下该状态对应的答案
        dp[pos][sum] = res;
    return res;
}
ll solve(ll x, int digit)
{
    memset(dp, -1, sizeof(dp)); // 将dp数组初始化为-1,表示对应状态的答案目前还未计算出
    int len = 0;                // 数字长度
    while (x)
    {
        a[++len] = x % 10;
        x /= 10;
    }
    return dfs(len, 0, digit, 1, 1);
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

    ll l, r;
    cin >> l >> r;
    for (int i = 0; i <= 9; i++) // 逐个处理0~9
    {
        if (i != 9)
            cout << solve(r, i) - solve(l - 1, i) << ' ';
        else
            cout << solve(r, i) - solve(l - 1, i) << '\n';
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值