BZOJ 3309: DZY Loves Math

Description

对于正整数 n ,定义f(n) n 所含质因子的最大幂指数。例如f(1960)=f(235172)=3, f(10007)=1 , f(1)=0
给定正整数 n,m ,求 ni=1mj=1f(gcd(i,j))

Solution

以为自己要独立完成人生中第一道有点难度的数论了。。然而因为常数大被卡掉了。。
化解的过程蛮简单

i=1nj=1mf(gcd(i,j))

=di=1ndj=1mdf(d)[gcd(i,j)=1]

=di=1ndj=1mdf(d)d|gcd(i,j)μ(d)

a=nd b=md
=di=1aj=1bf(d)dadbdμ(d)

=DnDmDd|Df(Dd)μ(d)

然后令 g(n)=d|nμ(d)f(nd)
原式可以化简为
=DnDmDg(D)

只要得到 g 的值,然后按值域封装即可
关键是g的值如何得到

我一开始是这么想的:
这种类似卷积形式的求和式都可以以 nlnn 的复杂度得到
我枚举 d ,枚举nd,得到 f
再做一次得到g
然后好了
本地测评预处理4S
交上去被卡掉了。。
但蛮有意义放下代码

Code 1

/**************************************************************
    Problem: 3309
    User: bblss123
    Language: C++
    Result: Time_Limit_Exceed
****************************************************************/

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int M=1e7+5;
int _,t,prime[M],g[M],f[M],mu[M];
bool mark[M];
ll sum[M];
inline void Max(int &a,int &b){
    if(a<b)a=b;
}
inline void Euler(){
    mu[1]=1;
    for(int i=2;i<M;++i){
        if(!mark[i])prime[t++]=i,mu[i]=-1;
        for(int j=0,p;j<t&&(p=prime[j])*i<M;++j){
            mark[p*i]=1;
            if(i%p==0){mu[i*p]=0;break;}
            mu[i*p]=-mu[i];
        }
    }
    for(int i=0,d;d=prime[i],i<t;++i){
        for(int k=1,w;(w=k*d)<M;++k)
            Max(f[w],g[w]=g[k]+1);
        for(int k=d;k<M;k+=d)g[k]=0;
    }
    for(int d=1;d<M;++d)
        for(int k=1,w;(w=k*d)<M;++k)
            g[w]+=mu[k]*f[d];
    for(int i=1;i<M;++i)
        sum[i]=sum[i-1]+g[i];
}
inline void rd(int &a){
    a=0;char c;
    while(c=getchar(),!isdigit(c));
    do a=a*10+(c^48);
        while(c=getchar(),isdigit(c));
}
int n,m;
inline void gao(){
    rd(n),rd(m);
    ll ans=0;
    for(int D=1;D<=min(n,m);++D){
        int last=min(n/(n/D),m/(m/D));
        ans+=1ll*(n/D)*(m/D)*(sum[last]-sum[D-1]);
        D=last;
    }
    printf("%lld\n",ans);
}
int main(){
    Euler();
    for(cin>>_;_--;)gao();
}

于是就当我以为又要卡常数的时候,手贱把 g 的值给打出来了,发现值域和μ完全一样。。
然后我开始用容斥推导
意识流地得到了通项式。。
然而意识流,所以去查证明
Claris好神,一眼流地得出通项式,orz 然而等于没看
其他地方连一眼流都没有。。
逛来逛去又回到了PoPoQQQ大爷那
证法通俗易懂,我来抄袭一下

先说公式:
n=Πsi=1pαii
(1):当 αi 的值完全一样的时候, g(n) 有非零值 (1)k+1
(2):其余时候值为0

证明:
mx=maxsi=1αi
注意 μ(d) 只在 d=Πsi=1p0 or 1i 时有非零值
那么所有 αi 至多减 1
那么我们可以把所有αi划分为两个集合 A,B
其中 A 中的元素全部等于mx B 中的元素不等于mx
考虑 d 使哪些αi减了 1
显然g值由 A 中的元素决定
假定A中有元素被选到
则对于 B 集合的奇偶选择可能性相同,又由μ的性质,知道当前答案为 0
那么对于A中没有元素选取到呢?
同样的,对 B 进行如上讨论,考虑把B集合给划分成 A B ,然后同样讨论(就好像一个递归),最后显然可以得到0的答案,则(2)式成立。
现在再来看(1)式就简单多了,直接容斥即可

这样的话 g <script type="math/tex" id="MathJax-Element-344">g</script>可以直接在线性筛里得到

Code 2

/**************************************************************
    Problem: 3309
    User: bblss123
    Language: C++
    Result: Accepted
    Time:11156 ms
    Memory:216136 kb
****************************************************************/

#include<iostream>
#include<algorithm>
#include<string.h>
#include<stdio.h>
using namespace std;
typedef long long ll;
const int M=1e7+5;
int _,t,prime[M>>2],g[M],a[M],pre[M];
ll sum[M];
bool mark[M];
inline void Max(int &a,int &b){
    if(a<b)a=b;
}
inline void Euler(){
    for(int i=2;i<M;++i){
        if(!mark[i])prime[t++]=pre[i]=i,g[i]=a[i]=1;
        for(int j=0,p;j<t&&(p=prime[j])*i<M;++j){
            mark[p*i]=1;
            if(i%p==0){
                a[p*i]=a[i]+1;
                pre[p*i]=pre[i]*p;
                int k=i/pre[i];
                if(k==1)g[p*i]=1;
                else g[p*i]=a[k]==a[p*i]?-g[k]:0;
                break;
            }
            a[i*p]=1;
            pre[i*p]=p;
            if(a[i]==1)g[i*p]=-g[i];
        }
    }
    for(int i=1;i<M;++i)
        sum[i]=sum[i-1]+g[i];
}
inline void rd(int &a){
    a=0;char c;
    while(c=getchar(),!isdigit(c));
    do a=a*10+(c^48);
        while(c=getchar(),isdigit(c));
}
int n,m;
inline int gcd(int n,int m){
    return m?gcd(m,n%m):n;
}
inline void nt(ll x){
    if(!x)return;
    nt(x/10);
    putchar(48+x%10);
}
inline void pt(ll x){
    if(!x)putchar('0');
    else nt(x);
}
inline void gao(){
    rd(n),rd(m);
    ll ans=0;
    for(int D=1;D<=min(n,m);++D){
        int last=min(n/(n/D),m/(m/D));
        ans+=1ll*(n/D)*(m/D)*(sum[last]-sum[D-1]);
        D=last;
    }
    pt(ans),putchar('\n');
}
int main(){
    Euler();
    for(rd(_);_--;)gao();
}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值