leetcode 137. Single Number II

https://leetcode.com/problems/single-number-ii/
题目描述:
Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one.

Note:
要求时间复杂度O(n),空间复杂的O(1)

解题思路(方法一):
1、这道题和上一道题一样,要求时间复杂度是线性的,要求不能使用空间复杂度是O(1)的。但不同的是这次除了一个数只出现一次,其余所有数都出现了三次。我们又要怎么解决这道题呢?

2、同样直接上讨论区代码,再次膜拜大神。大神使用了一种统计的方法,不过不是我等平常思维的统计每个数出现了几次,而是开了一个长度为32的数组,统计每个二进制位出现了几次,最后对3取模(如果是出现了K次就对K取模),取模完哪一位不是3的整倍数,就说明只出现了一次的那个数,在这个位上为1,最终可以求出最后的结果。以下举例说明。

举例说明:
c++中存储一个int型整数,都是32位的空间,我们也开32位的数组。但以下为了表示简便,我们只用最后的4位,就足够了。

假定我们的array of integers为[1,2,2,1,1,2,4,4,5,4],写成二进制位就是:

1:0001

2:0010

2:0010

1:0001

1:0001

2:0010

4:0100

4:0100

5:0101

4:0100

T:0434

R:0101

(T表示total,合计,每一列的和。R表示对3取模完之后的结果)

然后对T中的数值,每一位都对3取模,可以看到:出现了3的整数倍次的,取模完结果都是0;出现了非3的整数倍次的,即只出现了一次的那个数,取模完结果都为1,说明只出现一次的那个数,在当前这个位有出现过,最后也可以求出这个值。

不得不赞叹二进制位的神奇,可以发挥出“记录”的效果。这要是三进制位,就不能这样子处理了。二进制位为1,表示出现过,在这种“1个只出现1次,其余都出现了n次”的题目中,可以发挥出奇效。

不过似乎不是O(n)的时间复杂度?

代码(cpp):

class Solution {
public:
    int singleNumber(vector<int>& s) {
        vector<int> t(32);//开辟一个32位的数组 
        int i,j,n;
        for (i = 0; i < s.size(); ++i){
            n = s[i];
            for (j = 31; j >= 0; --j)
            {
                t[j]+=(n&1);//统计当前这个数的二进制位情况 
                n >>= 1;
                if (!n)
                    break;
            }
        }
        int result= 0;//表示最后的取模完的结果 
        for (j = 31; j >= 0; --j){
           n = t[j] % 3;
           if (n)
               result+=(1<<(31-j));
        }
        return result;
    }
};

解题思路(方法二):
上一篇博客中提出的方法很容易理解,但是不是O(n)的时间复杂度,而是O(n^2),这点应该很多朋友都能看出来。

今天给大家分享一个O(n)的方法,先贴出简洁的代码给大家欣赏一下。这个方法同样参考于discuss区。

代码:(python)

class Solution:
    def singleNumber(self, nums: List[int]) -> int:
        a = 0
        b = 0
        for i in range(len(nums)):
            b = (b ^ nums[i]) & ~a
            a = (a ^ nums[i]) & ~b
        return b

短短几行代码,简洁扼要地完成了任务。以下举例详细说明为什么能这样子做,以及推测要如何产生这样子的想法。

举例说明:
数组为[2,2,2,3],一共有四个元素,进行四次循环。

第一次循环,b=(0000^0010)&1111=0010=2,a=(0000^0010)&1101=0000=0

第二次循环,b=(0010^0010)&1111=0000=0,a=(0000^0010)&1111=0010=2

第三次循环,b=(0000^0010)&1101=0000=0,a=(0010^0010)&1111=0000=0

第四次循环,b=(0000^0011)&1111=0011=3,a=(0000^0011)&1100=0000=0

不知道大家有没有发现,某个值nums[i]第一次出现的时候,b把它记录了下来,这时候a=0;接着第二次出现的时候,b被清空了,记录到了a里面;接着第三次出现的时候,b和a都被清空了。

如果一个数组中,所有的元素除了一个特殊的只出现一次,其他都出现了三次,那么根据我们刚刚观察到的结论,最后这个特殊元素必定会被记录在b中。

有些朋友会说,但是不一定数组都是刚好3个2都在一起,3个4都在一起,都能够满足刚刚这样子的做法。

上上篇博客136题中,笔者本人提出了异或其实是满足交换律和结合律的,而且&这个操作也是满足交换律和结合律的,所以无论3个2会不会一起出现,结果都是会刚好抵消的。

所以上述的方法可以解决这个问题。

怎么想出这种方法的:
其实discuss区的大神是设计了一种方法,借由这种方法推出了a和b的变换方式…

我们想要达到的效果其实是——

ab作用
初始状态00
第一次碰见某个数x:0x把x记录在b中
第二次碰见某个数x:x0把x记录在a中
第三次碰见某个数x:00把a和b都清空,可以处理其他数

还记得我们之前处理“所有元素都出现两次,只有一个特殊元素出现一次”的问题吗?其实我们那会想要达到的状态也是——

a
初始状态0
第一次碰见某个数x:x
第二次碰见某个数x:0

那么这次我们同样利用异或运算,看能不能设计出一种变换的方法让a和b按照上述变换规则,进行转换。

b=0时碰到x,就变成x;b=x时再碰到x,就变成0,这个不就是异或吗?所以我们也许可以设计b=b xor x。

但是当b=0时再再碰到x,这时候b还是要为0,但这时候不同的是a=x,而前两种情况都是a=0。所以我们可以设计成:b=(b xor x)&~a

同样道理,我们可以设计出:a=(a xor x)&~b

试着解释一下,就是当a为0时候(~a=1),保留b的异或结果。当b非0时候,a的异或结果无效(b & ~b = 0),很有意思。

感想:
异或其实已经内含了“判断”的过程。想一下我们“所有元素都出现两次,只有一个特殊元素出现一次”的问题,两个相同的数字异或结果就是0,其实就是一个判断过程,只要数字出现过一次,它就会永久记得你。巧妙使用二进制以及组合逻辑操作符可以解决这类问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值