四色地图理论的图论证明
四色地图理论我就不多说了,四色猜想与哥德巴赫猜想、费马定理成为了近代三大数学难题。
首先,大家看一个的图,平面中圆点标号1,2,3,4. 两两之间有连线.将平面切分为四个区域a,b,c,d.
那么问题很简单,对于圆点5. 你是否能够跟圆点1,2,3,4之间都连线,而不跟之前的线交叉?
可以看得出来,不可能,因为3号点被封闭在1,2,4组成的三角形内了.
我想利用图论知识应该也可以很容易证明这一点:
平面中无论有多少个圆点,都不存在"5个圆点,且相互之间都有连线,且连线不交叉"
那么这个和四色地图理论有什么关系呢? 这就是简单建模了.
现在设定:
1:地图上一个国家用一个圆点表示,
2:如果两个国家接壤, 那么两个圆点之间连接一条直线
那么地图上只有两个国家是这样
那么地图上只有3个国家,且相互都接壤是这样
那么地图上只有4个国家,且相互都接壤是这样
那么地图上只有5个国家,且相互都接壤是什么样,就是我最初提的那个问题,答案是不可能
无论这个国家在什么区域a,b,c,d,答案都是不可能.(其实按照假设要求,位置a,b,c就不是可选位置)
这是在平面上的情况,那么在球面上呢? 答案同样是不可能.
只要是连续的面,就不可能.