CS
benshong
这个作者很懒,什么都没留下…
展开
-
求集合所有K划分的算法
在准备一篇论文的过程中,需要将一个集合进行k划分,并求出所有划分,网上搜了下并没有直接可用的算法,只好自己动手,特分享出来,转载请注明出处。首先分析将包含n个元素的集合进行k划分,假定总的划分次数为F(n,k),则其所有的划分可以由kF(n-1,k)和F(n-1,k-1)得到,前者是指将集合的前n-1个元素划分成k个子集,则将第k个元素可以加入其中的任一个子集形成一个新的划分,后者是指集合原创 2011-12-05 15:58:43 · 1778 阅读 · 0 评论 -
最大熵模型
最近想用信息论的方法做一个关于网络方面的研究,最大熵方法是一个很有意思的方法,无意中搜到下面这篇读书笔记,比自己总结的还要全面和详细,分享一下。作者是北大软件学院的胡江堂,原文在这里:http://johnthu.spaces.live.com/blog/cns!2053CD511E6D5B1E!246.entry1. 物理学的熵2. 信息论的熵3. 熵和主观概率(转载 2011-12-05 20:42:06 · 1019 阅读 · 0 评论 -
从概率论到Markov Chain Monte Carlo(MCMC)
大学本科时代开始学习的概率论,从变着花样从箱子里取不同颜色的球计算概率,到计算各种离散或连续的随机分布期望、方差,再高深点就是利用生成函数求期望和方差,再就是估计理论,包括点估计、极大似然估计和区间估计等,然后是一些假设检验,最后,会加上一点随机过程的知识。 和所有中国教育中的基础理论教学一样,我们被训练去求给定分布(一般会给一些复杂的分布)的期望和方差,我们去背复杂的估计理论和假原创 2011-12-06 08:27:03 · 1044 阅读 · 0 评论 -
卷积及拉普拉斯变换的通俗解释
卷积(convolution, 另一个通用名称是德文的Faltung)的名称由来,是在于当初定义它时,定义成 integ(f1(v)*f2(t-v))dv,积分区间在0到t之间。举个简单的例子,大家可以看到,为什么叫“卷积”了。比方说在(0,100)间积 分,用简单的辛普生积分公式,积分区间分成100等分,那么看到的是f1(0)和f2(100)相乘,f1(1)和f2(99)相乘,f1(2)和f2转载 2011-12-06 08:31:34 · 2694 阅读 · 0 评论 -
蒙特卡罗方法概述
计算方法的名称大多是与数学术语相关的,唯有蒙特卡罗方法名称特殊。大家知道,蒙特卡罗是地中海北岸的一个风景优美的城市,它是一座世界上有名的赌城。饶有兴趣的是科学家们竞用它命名了一种数学计算方法。那么,赌博与随机模拟(亦称统计试验)有什么关系呢?其实,赌博本身就可以看作是一种最简单的统计试验。例如掷骰子,一个均匀正方形的六面体,它在每一面刻有1到6的六个数码,如果要想知道掷骰子时某一面向上机会的多少,转载 2011-12-06 08:28:55 · 3999 阅读 · 0 评论 -
极大似然估计的直观解释
教材云: 极大似然估计法是求估计值的另一种方法,最早由高斯(R.A,Gauss)提出,后来为费史(Fisher)在1912年重新提出,并证明该方法的一些性质.它是建立在极大似然原理基础上的一个统计方法. 极大似然原理:一个随机试验有若干种可能的结果A,B,C,….若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大.例子:设甲原创 2011-12-06 08:30:18 · 727 阅读 · 0 评论 -
图˙谱˙马尔可夫过程˙聚类结构
文章原作者是MIT的研究计算机视觉的博士生Dahua,很有启发性。题目中所说到的四个词语,都是Machine Learning以及相关领域中热门的研究课题。表面看属于不同的topic,实际上则是看待同一个问题的不同角度。不少文章论述了它们之间的一些联系,让大家看到了这个世界的奇妙。从图说起 这里面,最简单的一个概念就是“图”(Graph),它用于表示事物之间的相互联系。每个图有一批节点转载 2011-12-06 08:23:45 · 2815 阅读 · 0 评论