机器学习(2)
机器学习分类
《人工智能手册》中把机器学习分为四大类,即“机械学习”、“示教学习”、“类比学习”、“归纳学
习”
1.机械学习也称为“死记硬背式学习”,就是把外界输入的信息全部记下来,在需要的时
候原封不动地取出来使用,这实际上没有进行真正的学习;
2.示教学习和类比学习实际上类似于R.S. Michalski等人所说的“从指令中学习”和“通过
观察和发现学习”;
3.归纳学习类似于“从例子中学习”,即从训练例中归纳出学习结果。20 世纪80 年代以
来,被研究得最多、应用最广的是“从例子中学习”(也就是广义的归纳学习),它涵盖
了监督学习(例如分类、回归)、非监督学习(例如聚类)等众多内容。
通常将机器学习算法分成两大类
-监督式学习(Supervised Learning) 口语化表示为,知道问题的答案,或者说,问题的结果是
可定义可数学化表示的。具体化表述为输入数据中有已知的结果或标记。问题包括分类问题和回
归问题,算法包括逻辑回归和反向神经网络。
预测房价
输出的值为连续值集合,属于回归(regression)的范畴
判断肿瘤的良恶性
输出为离散值,分类(Classification)问题。
非监督式学习(Unsupervised Learning)没有一个确定的结果目标。模型对数据的结构和
数值进行归纳。问题主要包括聚类问题,算法K-means算法
给出的所有数据都是一样
机器学习分类
《人工智能手册》中把机器学习分为四大类,即“机械学习”、“示教学习”、“类比学习”、“归纳学
习”
1.机械学习也称为“死记硬背式学习”,就是把外界输入的信息全部记下来,在需要的时
候原封不动地取出来使用,这实际上没有进行真正的学习;
2.示教学习和类比学习实际上类似于R.S. Michalski等人所说的“从指令中学习”和“通过
观察和发现学习”;
3.归纳学习类似于“从例子中学习”,即从训练例中归纳出学习结果。20 世纪80 年代以
来,被研究得最多、应用最广的是“从例子中学习”(也就是广义的归纳学习),它涵盖
了监督学习(例如分类、回归)、非监督学习(例如聚类)等众多内容。
通常将机器学习算法分成两大类
-监督式学习(Supervised Learning) 口语化表示为,知道问题的答案,或者说,问题的结果是
可定义可数学化表示的。具体化表述为输入数据中有已知的结果或标记。问题包括分类问题和回
归问题,算法包括逻辑回归和反向神经网络。
预测房价
输出的值为连续值集合,属于回归(regression)的范畴
判断肿瘤的良恶性
输出为离散值,分类(Classification)问题。
非监督式学习(Unsupervised Learning)没有一个确定的结果目标。模型对数据的结构和
数值进行归纳。问题主要包括聚类问题,算法K-means算法
给出的所有数据都是一样