浅谈乘法逆元

浅谈乘法逆元

前言

乘法逆元……难以言表,一直觉得没有什么用,但是面对现实又不得……

正题

定义

a ∗ x ≡ 1 (   m o d   b ) a*x\equiv1 (\bmod {b}) ax1(modb),且a与b互质,那么我们就能定义: x为a的逆元,记为 a − 1 a^{-1} a1
,所以我们也可以称x为a的倒数(我的理解是不在模P意义下)
在模P意义下
所以对于 a b (   m o d   p ) \frac{a}{b} (\bmod {p}) ba(modp)
我们就可以求出b在   m o d   p \bmod {p} modp下的逆元,然后乘上 a a a,再   m o d   p \bmod {p} modp,就是这个乘法逆元的值了。

求法

扩欧的乘法逆元求法我已经在我的上篇博客介绍过了,
乘法逆元的扩展欧几里得求法

我现在来介绍一点玄妙的东西

快速幂

费马小定理大家应该会的
a p − 1 ≡ 1 ( m o d p ) a^{p−1}≡1(modp) ap11(modp)
不会自行百度

那么
a ∗ x ≡ 1 (   m o d   b ) a*x\equiv1 (\bmod {b}) ax1(modb)
可得
a ∗ x ≡ a p − 1 (   m o d   b ) a*x\equiv a^{p−1} (\bmod {b}) axap1(modb)
可得
x ≡ a p − 2 (   m o d   b ) x\equiv a^{p-2} (\bmod {b}) xap2(modb)

ll fpm(ll x, ll power, ll mod) 
{
    x%=mod;
    ll ans=1;
    while (power) {
        if (power & 1) ans = (ans * x) % mod;
        x = (x * x) % mod;
        power >>= 1;
    }
    return ans;
}
printf ("%lld\n",fpm(i,p-2,p));
线性求一连串数字模P的乘法逆元

这个真的好玄啊
首先
很容易知道
1 − 1 ≡ 1 ( m o d p ) 1^{-1}\equiv 1(mod p) 111(modp)

p = k ∗ i + r p=k*i+r p=ki+r
k ∗ i + r ≡ 0 ( m o d p ) k*i+r\equiv 0(mod p) ki+r0(modp)
乘上 i − 1 r − 1 i^{-1}r^{-1} i1r1

k ∗ r − 1 + i − 1 ≡ 0 ( m o d p ) k*r^{-1}+i^{-1}\equiv 0(mod p) kr1+i10(modp)

i − 1 ≡ − k ∗ r − 1 ( m o d p ) i^{-1}\equiv -k*r^{-1}(mod p) i1kr1(modp)

i − 1 ≡ − ⌊ p i ⌋ ∗ ( p m o d i ) − 1 ( m o d p ) i^{−1}≡−⌊\frac{p}{i}⌋∗(pmodi)^{−1}(modp) i1ip(pmodi)1(modp)

好神奇啊(雾)

#include<bits/stdc++.h>
using namespace std;

long long a[3000010],n,m,p;

int main()
{
	scanf("%lld%lld",&n,&p);
	a[1]=1;
	printf("%lld\n",1);
	for (int i=2; i<=n; i++)
	  {
	  	a[i]=((-(p/i)*a[p%i])%p+p)%p;
	  	printf("%lld\n",a[i]);
	  }
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值